

# **ANCHORING & DOWELING**

ULTRABOND<sup>®</sup> HYB-2CC

### High Strength Hybrid Anchoring Adhesive

### **Product Description**

ULTRABOND<sup>®</sup> HYB-2CC is a code compliant, two-component, 10:1 mix ratio by volume, high performance hybrid anchoring and post-installed reinforcing bar system. The system is suitable for use in cracked and uncracked concrete in accordance with ACI 355.4 and ICC-ES AC308. HYB-2CC offers an extended installation temperature range between 23 °F to 104 °F (-5 °C to 40 °C).

### **General Uses & Applications**

- Anchoring threaded rod and reinforcing bar (rebar) into cracked or uncracked concrete
- Alternative to cast-in-place reinforcing bar connections per ACI 318 & IBC Chapter 19
- Suitable for dry, water saturated and water-filled conditions using threaded rod or rebar
- Vertical down, horizontal, upwardly inclined and overhead installations

### **Advantages & Features**

- ICC-ES ESR-4535 evaluation report for cracked and uncracked concrete
- Building code compliant, IBC/IRC: 2021, 2018, 2015, 2012 & 2009
- Florida Building Code (FBC) Compliant: 2017
- City of Los Angeles (LABC/LARC) Code Compliant: 2017
- ICC-ES AC308 and ACI 355.4 assessed for resisting long term loading conditions (creep) up to 212 °F (100 °C) and short term loading up to 320 °F (160 °C)
- NSF Certified Drinking Water System Components to NSF/ ANSI 61
- Multiple Anchor Types: fractional and metric threaded rod & rebar (for both anchor systems and rebar development length applications)
- Qualified for Seismic Design Categories A through F
- Designed for rapid strength concrete anchoring
- Compatible with Adhesives Technology Corp. (ATC) free Pro Anchor Design software

### **STANDARDS & APPROVALS**

CODE COMPLIANT:

ICC-ES ESR-4535 IBC/IRC 2021, 2018, 2015, 2012 & 2009 City of Los Angeles 2017 Florida Building Code 2017 ASTM C881-20 / AASHTO M235 Type I, II, IV & V Grade 3 Class A, B & C Drinking Water System Components NSF/ANSI 61 (See ATC website for Department of Transportation (DOT)

approvals throughout the United States)



**Availability:** Adhesives Technology Corp. (ATC) products are available online and through select distributors serving all your construction needs. Please contact ATC for a distributor near you or visit <u>www.atcepoxy.com</u> to search for a distributor by zip code.

**Color & Ratio:** Part A (Resin) Light Beige: Part B (Hardener) Black, Mixed Ratio: 10:1 by volume, Mixed Color - Gray

Storage & Shelf Life: 18 months when stored in unopened containers in dry and dark conditions. Store between 41 °F (5 °C) and 77 °F (25 °C).

**Installation & Estimation:** Manufacturer's Printed Installation Instructions (MPII) / Instruction Card (IC) are available within this Technical Data Sheet (TDS). Due to occasional updates and revisions, always verify and use the most current instructions. In order to achieve maximum results, proper installation is imperative. An estimating guide for product usage may be found on the <u>product's estimation guide</u>.

**Clean-Up:** Always wear appropriate personal protective equipment such as safety glasses and gloves. Clean uncured materials from tools and equipment using a mild solvent, such as CRACKBOND<sup>®</sup> INDUSTRIAL CITRUS CLEANER from Adhesives Technology Corp. Cured material may only be removed mechanically using a sander or grinder. Collect with absorbent material. Flush area with water. Dispose of in accordance with local, state and federal disposal regulations.

#### Limitations & Warnings:

- · Do not thin with solvents, as this will prevent cure
- For anchoring applications, concrete should be a minimum of 21 days old prior to anchor installation per ACI 355.4
- Always consult with the Engineer of Record, or a design professional, prior to use to ensure product applicability

**Safety:** Please refer to the Safety Data Sheet (SDS) for ULTRABOND HYB-2CC. Call ATC for more information at 1-800-892-1880.

**Specification:** Anchoring adhesive shall be a two component, 10:1 ratio by volume, hybrid anchoring system supplied in premeasured cartridges. Adhesive must meet the requirements of C881-20 specification for Type I, II, IV and V Grade 3 Class A, B & C and must have a compressive yield strength of 15,049 psi (104 MPa) at 73 °F (23 °C) after a 7 day cure. Adhesive shall be ULTRABOND HYB-2CC from Adhesives Technology Corp., Pompano Beach, Florida. Anchors shall be installed per the MPII / IC for ULTRABOND HYB-2CC anchoring system.

## **Ordering Information**

TABLE 1: ULTRABOND HYB-2CC Adhesive Packaging, Dispensing Tools and Mixing Nozzles<sup>1</sup>

| Package Size                | 9.5 fl. oz.<br>(280 ml)<br>Cartridge | 13.9 fl. oz.<br>(410 ml)<br>Cartridge | 27.9 fl. oz.<br>(825 ml)<br>Cartridge |
|-----------------------------|--------------------------------------|---------------------------------------|---------------------------------------|
| Part #                      | A10-HYB2CC                           | A14-HYB2CC                            | A28-HYB2CC                            |
| Recommended Mixing Nozzle   |                                      | T16-3PK                               |                                       |
| Manual Dispensing Tool      | TM10-HYB                             | TM14-HYB                              | TM28-HYB                              |
| Pneumatic Dispensing Tool   |                                      |                                       | TA28-HYB                              |
| Battery Tool                |                                      |                                       | TB28HD-A                              |
| Case Qty.                   | 12                                   | 10                                    | 9                                     |
| Pallet Qty.                 | 900                                  | 750                                   | 351                                   |
| Brush Extension             |                                      | BP-EXT                                |                                       |
| Brush Extension with Handle |                                      | BP-EXTH                               |                                       |
| Nozzle Extension Tubing     | T16                                  | EXT                                   | T16EXTL                               |
| Retention Wedge             |                                      | WEDGE                                 |                                       |

1. Each cartridge is packaged with one mixing nozzle.





### **Ordering Information**

In order to reduce the risks to respirable crystalline silica, ULTRABOND HYB-2CC has been tested and approved for use in conjunction with Milwaukee Tool's OSHA compliant, commercially available dust extraction products in combination with ULTRABOND HYB-2CC installations in dry and water saturated (damp) concrete (see Table 2 for details). When used in accordance with the manufacturer's instructions, and in conjunction with ULTRABOND HYB-2CC these Vacuum Drill Bits along with the Dust Extractor with HEPA filter as specified by Milwaukee Tool, can completely replace the traditional blow-brushblow cleaning method used to install threaded rod (see Installation Instructions (MPII/ IC) for more detail). Important: Prior to injecting the adhesive, the hole must always be clean, either by using self-cleaning vacuum bits or by using the blow-brush-blow cleaning method with a traditional hammer drill bit and dust shroud. Only vacuuming out a hole drilled with a standard masonry bit is NOT acceptable and will yield lower performance than published for the anchoring/doweling adhesive. For more information, see Respirable Crystalline Silica White Paper at www.atcepoxy.com/resources. NOTE: The use of Vacuum Drill Bits and Dust Extractor with HEPA Filter together with ULTRABOND HYB-2CC has not been evaluated by ICC-ES as an alternative drilling method and therefore the use of the vacuum bit dust extraction solutions should be limited to applications which do not require an IBC/IRC approval.



Milwaukee Tool Dust Extraction System

| Part #     | Drill Type | Drill Bit<br>Size<br>in. | Overall<br>Length<br>in. | Useable<br>Length<br>in. |
|------------|------------|--------------------------|--------------------------|--------------------------|
| 48-20-2102 |            | 7/16                     | 13                       | 7 7/8                    |
| 48-20-2106 |            | 1/2                      | 13                       | 7 7/8                    |
| 48-20-2110 | SDS+       | 9/16                     | 14                       | 9 1/2                    |
| 48-20-2114 |            | 5/8                      |                          | 9 1/2                    |
| 48-20-2118 |            | 3/4 14                   |                          | 9 1/2                    |
| 48-20-2152 |            | 5/8                      | 23                       | 15 3/4                   |
| 48-20-2156 |            | 3/4                      | 23                       | 15 3/4                   |
| 48-20-2160 | SDS-Max    | 7/8                      | 23                       | 15 3/4                   |
| 48-20-2164 | SDS-IVIAX  | 1                        | 25                       | 17 1/2                   |
| 48-20-2168 |            | 1-1/8                    | 35                       | 27                       |
| 48-20-2172 |            | 1-3/8                    | 35                       | 27                       |
| 8960-20    |            | 8 Gallon Dust            | Extractor Vacuum         |                          |

#### **TABLE 2:** Milwaukee Vacuum Drill Components<sup>1</sup>

1. Vacuum drill accessories available from Milwaukee distributors nationwide.



### **Material Specifications**

### TABLE 3: ULTRABOND HYB-2CC performance to ASTM C881-20<sup>1,2,3</sup>

|                                              |        |          |              | Sample C             | onditioning Ter       | mperature             |  |  |
|----------------------------------------------|--------|----------|--------------|----------------------|-----------------------|-----------------------|--|--|
| Property                                     | Cure   | ASTM     | Units        | Class A              | Class B               | Class C               |  |  |
|                                              | Time   | Standard |              | 32 °F<br>(0 °C)      | 40 °F<br>(4 °C)       | 60 °F<br>(16 °C)      |  |  |
| Gel Time - 60 Gram Mass <sup>4,5</sup>       |        | C881     | min          | 26                   | 14                    | 6                     |  |  |
| Consistency or Viscosity                     |        | 0001     |              | Non-sag              |                       |                       |  |  |
| Compressive Yield Strength                   | 7 day  | D695     | psi<br>(MPa) | 10,347<br>(71.3)     | 13,400<br>(92.4)      | 15,049<br>(104)       |  |  |
| Compressive Modulus                          | 7 uay  |          | psi<br>(MPa) | 1,407,000<br>(9,701) | 1,573,030<br>(10,846) | 1,676,320<br>(11,558) |  |  |
| Bond Strength <sup>6</sup>                   | 2 day  | C882     | psi<br>(MPa) | 2,839<br>(19.6)      | 2,824<br>(19.5)       | 2,812<br>(19.4)       |  |  |
| Hardened to Hardened Concrete                | 14 day | 0002     | psi<br>(MPa) | 3,211<br>(22.1)      | 3,143<br>(21.7)       | 3,270<br>(22.5)       |  |  |
| Heat Deflection Temperature <sup>7</sup>     | 7 day  | D648     | °F<br>(°C)   |                      | 258<br>(126)          |                       |  |  |
| Water Absorption <sup>7</sup>                | 14 day | D570     | %            |                      | 0.90                  |                       |  |  |
| Linear Coefficient of Shrinkage <sup>7</sup> |        | D2566    | 70           |                      | 0.000                 |                       |  |  |

1. Product testing results based on representative lot(s). Average results will vary according to the tolerances of the given property.

2. Full cure time is listed above to obtain the given properties for each product characteristic.

3. Results may vary due to environmental factors such as temperature, moisture and type of substrate.

4. Per ASTM C881 Section 5.2. Minimum Gel Time of 5 minutes may be specified when automatic proportioning, mixing and dispensing equipment is used for Types I and IV.

5. Properties tested at 50 °F (10° C) for Class B.

6. Property tested at 35 °F (2 °C) for class A and 73 °F (23 °C) for Class C.

7. Specimens cured at 73 °C (23 °C).

### TABLE 4: ULTRABOND HYB-2CC NSF/ANSI CERTIFICATION<sup>1</sup>

| ANSI<br>Certification | Description                                              | Application                      | Water Contact<br>Temperature                | Anchor Sizes<br>Installed in<br>Concrete             |
|-----------------------|----------------------------------------------------------|----------------------------------|---------------------------------------------|------------------------------------------------------|
| NSF 61                | Drinking Water System<br>Componenets - Health<br>Effects | Joining and Sealing<br>Materials | Commercial Hot<br>180 ± 4 °F<br>(82 ± 2 °C) | Threaded Rod<br>and Rebar<br>≤ 1 1/4 in.<br>Diameter |

1. Certified for use as an anchoring adhesive for installing thread rods (less than or equal to 1.3 inches in diameter) in concrete or masonry for water treatment applications.

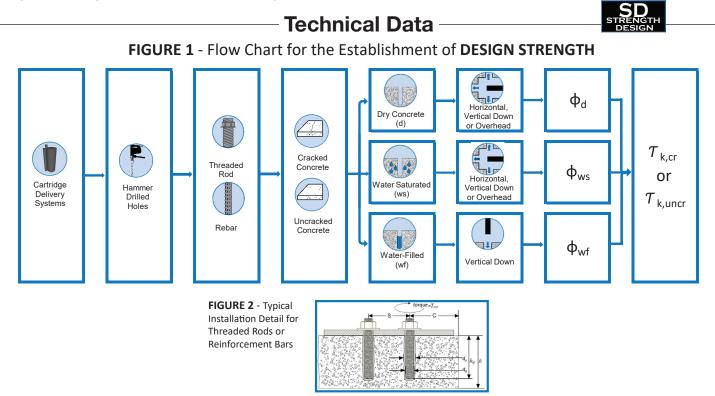
#### Table 5: ULTRABOND HYB-2CC CURE SCHEDULE<sup>1</sup>

| Base Materia | al Tempature | Working Time | Full Cure Time |  |  |  |  |
|--------------|--------------|--------------|----------------|--|--|--|--|
| °F           | (°C)         |              |                |  |  |  |  |
| 23 to 31     | (-5 to -1)   | 50 min       | 5 hr           |  |  |  |  |
| 32 to 40     | (0 to 4)     | 25 min       | 3.5 hr         |  |  |  |  |
| 41 to 49     | (5 to 9)     | 15 min       | 2 hr           |  |  |  |  |
| 50 to 58     | (10 to 14)   | 10 min       | 1 hr           |  |  |  |  |
| 59 to 67     | (15 to 19)   | 6 min        | 40 min         |  |  |  |  |
| 68 to 85     | (20 to 29)   | 3 min        | 30 min         |  |  |  |  |
| 86 to 104    | (30 to 40)   | 2 min        | 30 min         |  |  |  |  |

1. Working and full cure times are approximate, may be linearly interpolated between listed temperatures and are based on cartridge/nozzle system performance.

2. Application Temperature: Substrate and ambient air temperature should be between 23 - 104 °F

(-5 - 40 °C) for applications requiring IBC/IRC code compliance.


3. When ambient or base material temperature falls below 70 °F (21 °C), condition the adhesive to 41 °F -

104 °F (5 °C - 40 °C) for installations between 23 °F - 40 °F (-5 °C - 4 °C).

# **ANCHORING & DOWELING**

### **High Strength Hybrid Anchoring Adhesive**

HYB-2**CC** 



ULTRABOND HYB-2CC has been tested and assessed by an accredited independent testing laboratory in accordance with ICC -ES AC308, ACI 355.4 and ASTM E488 for use in cracked and uncracked normal weight and lightweight concrete, for loading conditions including seismic and wind, for structural design to ACI 318-14 Chapter 17 (ACI 318-11/08 Appendix D) and is approved per ICC-ES ESR-4535. The design process and parameters for ULTRABOND HYB-2CC are shown in Figures 1 - 2 and Tables 7 - 18 for Strength Design. Tables 19 and 20 show the determination of development length for post-installed reinforcing bar connections.

| TABLE 6: DESIGN STRENGTH - TABLE REFERENCE INDEX |
|--------------------------------------------------|
|--------------------------------------------------|

| DESIGN STRENGTH <sup>1</sup> - THREADED RODS                                                                             | Fractional | Metric   |  |  |
|--------------------------------------------------------------------------------------------------------------------------|------------|----------|--|--|
| Steel Strength - N <sub>sa</sub> , V <sub>sa</sub>                                                                       | Table 7    | Table 10 |  |  |
| Concrete Strength - $N_{pn}$ , $N_{sb}$ , $N_{sbg}$ , $N_{cb}$ , $N_{cbg}$ , $V_{cb}$ , $V_{cbg}$ , $V_{cp}$ , $V_{cpg}$ | Table 8    | Table 11 |  |  |
| Bond Strength <sup>2</sup> - $N_a$ , $N_{ag}$                                                                            | Table 9    | Table 12 |  |  |
| DESIGN STRENGTH <sup>1</sup> – REINFORCING BAR                                                                           | Fractional | Metric   |  |  |
| Steel Strength - N <sub>sa</sub> , V <sub>sa</sub>                                                                       | Table 13   | Table 16 |  |  |
| Concrete Strength - $N_{pn}$ , $N_{sb}$ , $N_{sbg}$ , $N_{cb}$ , $N_{cbg}$ , $V_{cbg}$ , $V_{cbg}$ , $V_{cpg}$           | Table 14   | Table 17 |  |  |
| Bond Strength <sup>2</sup> - $N_a$ , $N_{ag}$                                                                            | Table 15   | Table 18 |  |  |
| Determination of development length for post-<br>installed reinforcing bar connections                                   | Table 19   | Table 20 |  |  |

1. Ref. ACI 318-14 17.3.1.1 or 318-11 D.4.1.1, as applicable.

2. See Section 4.1.4 of ULTRABOND HYB-2CC ICC-ES ESR-4535.



## - Technical Data -



| TABLE 7:                             | ULTRABOND HYB-2CC                                     | SIEEL de            | esign info         | rmation fo      | or IHREA         |                   |                    | o.d               |                   |                    |  |  |
|--------------------------------------|-------------------------------------------------------|---------------------|--------------------|-----------------|------------------|-------------------|--------------------|-------------------|-------------------|--------------------|--|--|
| D                                    | esign Information                                     | Symbol              | Units              | 3/8"            | 1/2"             | 5/8"              | nreaded Ro<br>3/4" | od<br>7/8"        | 1"                | 1 1/4"             |  |  |
|                                      |                                                       |                     | in.                | 3/8<br>0.375    | 0.500            | 0.625             | 3/4<br>0.750       | 0.875             | 1.000             | 1.250              |  |  |
| Nor                                  | ninal Anchor Diameter                                 | d <sub>a</sub>      | (mm)               | (9.5)           | (12.7)           | (15.9)            | (19.1)             | (22.2)            | (25.4)            | (31.8)             |  |  |
|                                      |                                                       |                     | in. <sup>2</sup>   | 0.078           | 0.142            | 0.226             | 0.335              | 0.462             | 0.606             | 0.969              |  |  |
| Threaded                             | Rod Cross-Sectional Area                              | A <sub>se</sub>     | (mm <sup>2</sup> ) | (50)            | (92)             | (146)             | (216)              | (298)             | (391)             | (625)              |  |  |
|                                      |                                                       | N                   | lb.                | 4,495           | 8,230            | 13,110            | 19,400             | 26,780            | 35,130            | 56,210             |  |  |
| 9                                    | Nominal Strength                                      | N <sub>sa</sub>     | (kN)               | (20.0)          | (36.6)           | (58.3)            | (86.3)             | (119.1)           | (156.3)           | (250.0)            |  |  |
| e 3<br>36                            | as Governed by<br>Steel Strength                      | V <sub>sa</sub>     | lb.                | 2,695           | 4,940            | 7,860             | 11,640             | 16,070            | 21,080            | 33,725             |  |  |
| rad<br>de (                          | -                                                     | v <sub>sa</sub>     | (kN)               | (12.0)          | (22.0)           | (35.0)            | (51.8)             | (71.5)            | (93.8)            | (150.0)            |  |  |
| ASTM A36 Grade 36<br>F1554 Grade 36  | Reduction Factor for<br>Seismic Shear                 | α <sub>V,seis</sub> |                    | 0.60            |                  |                   |                    |                   |                   |                    |  |  |
| STM ,<br>F155                        | Strength Reduction<br>Factor for Tension <sup>2</sup> | φ                   |                    | 0.75            |                  |                   |                    |                   |                   |                    |  |  |
| <                                    | Strength Reduction<br>Factor for Shear <sup>2</sup>   | φ                   |                    | 0.65            |                  |                   |                    |                   |                   |                    |  |  |
| 10                                   | Nominal Strength                                      | N <sub>sa</sub>     | lb.                | 5,815           | 10,645           | 16,950            | 25,090             | 34,630            | 45,430            | 72,685             |  |  |
| e 5(                                 | as Governed by                                        |                     | (kN)               | (25.9)          | (47.4)           | (75.4)            | (111.6)            | (154.0)           | (202.1)           | (323.3)            |  |  |
| ade                                  | Steel Strength                                        | V <sub>sa</sub>     | lb.                | 3,490           | 6,385            | 10,170            | 15,055             | 20,780            | 27,260            | 43,610             |  |  |
| Ū                                    | Reduction Factor for                                  |                     | (kN)               | (15.5)          | (28.4)           | (45.2)            | (67.0)<br>0.60     | (92.4)            | (121.3)           | (194.0)            |  |  |
| = 1554                               | Seismic Shear<br>Strength Reduction                   | α <sub>V,seis</sub> |                    |                 |                  |                   |                    |                   |                   |                    |  |  |
| ASTM F1554 Grade 55                  | Factor for Tension <sup>2</sup><br>Strength Reduction | φ                   |                    | 0.75            |                  |                   |                    |                   |                   |                    |  |  |
| À                                    | Factor for Shear <sup>2</sup>                         | φ                   |                    |                 | (                |                   | 0.65               |                   |                   |                    |  |  |
|                                      | Nominal Strength<br>as Governed by                    | N <sub>sa</sub>     | lb.<br>(kN)        | 9,685<br>(43.1) | 17,735<br>(78.9) | 28,250<br>(125.7) | 41,810<br>(186.0)  | 57,710<br>(256.7) | 75,710<br>(336.8) | 121,135<br>(538.8) |  |  |
| 105                                  | Steel Strength                                        | V <sub>sa</sub>     | lb.<br>(kN)        | 5,810<br>(25.8) | 10,640<br>(47.3) | 16,950<br>(75.4)  | 25,085<br>(111.6)  | 34,625<br>(154.0) | 45,425<br>(202.1) | 72,680<br>(323.3)  |  |  |
| 3 B7<br>srade `                      | Reduction Factor<br>for Seismic Shear                 | α <sub>V,seis</sub> |                    |                 |                  |                   | 0.60               |                   |                   |                    |  |  |
| ASTM A193 B7<br>ASTM F1554 Grade 105 | Strength Reduction<br>Factor for Tension <sup>2</sup> | φ                   |                    | 0.75            |                  |                   |                    |                   |                   |                    |  |  |
|                                      | Strength Reduction<br>Factor for Shear <sup>2</sup>   | φ                   |                    |                 |                  |                   | 0.65               |                   |                   |                    |  |  |
|                                      | Nominal Strength                                      | N <sub>sa</sub>     | lb.<br>(kN)        | 9,300<br>(41.4) | 17,030<br>(75.8) | 27,120<br>(120.6) | 40,140<br>(178.6)  | 55,405<br>(246.5) | 72,685<br>(323.3) | 101,755<br>(452.6) |  |  |
| 49                                   | as Governed by<br>Steel Strength                      | V <sub>sa</sub>     | lb.<br>(kN)        | 5,580<br>(24.8) | 10,220<br>(45.5) | 16,270<br>(72.4)  | 24,085<br>(107.1)  | 33,240<br>(147.9) | 43,610<br>(194.0) | 61,055<br>(271.6)  |  |  |
| ASTM A449                            | Reduction Factor<br>for Seismic Shear                 | α <sub>V,seis</sub> |                    |                 |                  | · · · /           | 0.60               |                   | (                 |                    |  |  |
| AST                                  | Strength Reduction<br>Factor for Tension <sup>2</sup> | φ                   |                    |                 |                  |                   | 0.75               |                   |                   |                    |  |  |
|                                      | Strength Reduction<br>Factor for Shear <sup>2</sup>   | φ                   |                    |                 |                  |                   | 0.65               |                   |                   |                    |  |  |

TABLE 7: ULTRABOND HYB-2CC STEEL design information for THREADED ROD<sup>1</sup>

### **Technical Data**



| Decir                                     | un Information                                                                                                              | Symbol              | Units |        |        | Tł      | nreaded R | od      |         |         |  |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------|-------|--------|--------|---------|-----------|---------|---------|---------|--|
| Desig                                     | gn Information                                                                                                              | Symbol              | Units | 3/8"   | 1/2"   | 5/8"    | 3/4"      | 7/8"    | 1"      | 1 1/4"  |  |
|                                           | Nominal Strength                                                                                                            | N <sub>sa</sub>     | lb.   | 5,620  | 10,290 | 16,385  | 24,250    | 33,470  | 43,910  | 70,260  |  |
| 5.8                                       | as Governed by                                                                                                              | IN sa               | (kN)  | (25.0) | (45.8) | (72.9)  | (107.9)   | (148.9) | (195.3) | (312.5) |  |
| ss                                        | Steel Strength                                                                                                              | V <sub>sa</sub>     | lb.   | 3,370  | 6,175  | 9,830   | 14,550    | 20,085  | 26,350  | 42,155  |  |
| ü                                         |                                                                                                                             | - 58                | (kN)  | (15.0) | (27.5) | (43.7)  | (64.7)    | (89.3)  | (117.2) | (187.5) |  |
| 568M                                      | Reduction Factor<br>for Seismic Shear                                                                                       | α <sub>V,seis</sub> |       | 0.60   |        |         |           |         |         |         |  |
| ASTM F568M Class 5.8                      | Strength Reduction<br>Factor for Tension <sup>2</sup>                                                                       | φ                   |       | 0.65   |        |         |           |         |         |         |  |
| AS                                        | Strength Reduction<br>Factor for Shear <sup>2</sup>                                                                         | φ                   |       |        |        |         | 0.60      |         |         |         |  |
| ss                                        | Nominal Strength                                                                                                            | N <sub>sa</sub>     | lb    | 7,750  | 14,190 | 22,600  | 28,430    | 39,245  | 51,485  | 82,370  |  |
| lee                                       | as Governed by                                                                                                              | , sa                | (kN)  | (34.5) | (63.1) | (100.5) | (126.5)   | (174.6) | (229.0) | (366.4) |  |
| stail                                     | Steel Strength                                                                                                              | V <sub>sa</sub>     | lb    | 4,650  | 8,515  | 13,560  | 17,060    | 23,545  | 30,890  | 49,425  |  |
| 8 V S<br>804                              | S 4 Steel Strength                                                                                                          | 34                  | (kN)  | (20.7) | (37.9) | (60.3)  | (75.9)    | (104.7) | (137.4) | (219.9) |  |
| 93 CV<br>6 & 3                            | Nominal Strength<br>as Governed by<br>Steel Strength<br>NO &<br>Reduction Factor<br>for Seismic Shear<br>Strength Reduction | $\alpha_{V,seis}$   |       | 0.60   |        |         |           |         |         |         |  |
| ASTM F593<br>316 {                        | Strength Reduction<br>Factor for Tension <sup>2</sup>                                                                       | φ                   |       | 0.65   |        |         |           |         |         |         |  |
| AST                                       | Strength Reduction<br>Factor for Shear <sup>2</sup>                                                                         | φ                   |       |        |        |         | 0.60      |         |         |         |  |
| ~                                         | Nominal Strongth                                                                                                            | N <sub>sa</sub>     | lb    | 7,365  | 13,480 | 21,470  | 31,780    | 43,860  | 57,540  | 92,065  |  |
| » 2E                                      | Nominal Strength<br>as Governed by                                                                                          | IN sa               | (kN)  | (32.8) | (60.0) | (95.5)  | (141.4)   | (195.1) | (256.0) | (409.5) |  |
| 93N<br>ass                                | Steel Strength                                                                                                              | V <sub>sa</sub>     | lb    | 4,420  | 8,090  | 12,880  | 19,070    | 26,320  | 34,525  | 55,240  |  |
| CI A1                                     |                                                                                                                             | • sa                | (kN)  | (19.7) | (36.0) | (57.3)  | (84.8)    | (117.1) | (153.6) | (245.7) |  |
| ASTM A193/A193M<br>Grade B8/B8M, Class 2B | Reduction Factor<br>for Seismic Shear                                                                                       | α <sub>V,seis</sub> |       |        |        |         | 0.60      |         |         |         |  |
| STM<br>le B8                              | Strength Reduction<br>Factor for Tension <sup>2</sup>                                                                       | φ                   |       |        |        |         | 0.75      |         |         |         |  |
| A:<br>Grad                                | Strength Reduction<br>Factor for Shear <sup>2</sup>                                                                         | φ                   |       |        |        |         | 0.65      |         |         |         |  |

TABLE 7 (Continued): ULTRABOND HYB-2CC STEEL design information for THREADED ROD<sup>1</sup>

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi <sup>1</sup>Values provided for common rod material types are based on specified strength and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq.

17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable. Nuts and washers must comply with requirements for the rod. <sup>2</sup>The tabulated value of  $\phi$  applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth

in ACI 318-14 17.3.3 or ACI 318-11 D.4.3., as applicable are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318-11 D4.4.



**Technical Data** 



### **TABLE 8:** ULTRABOND HYB-2CC **CONCRETE BREAKOUT** design information for **THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL and CARBIDE BIT**<sup>1</sup>

| Desire lefereration                    | Our make al         | 11      | Threaded Rod    |                    |               |                                                                 |                            |            |        |  |  |  |
|----------------------------------------|---------------------|---------|-----------------|--------------------|---------------|-----------------------------------------------------------------|----------------------------|------------|--------|--|--|--|
| Design Information                     | Symbol              | Units   | 3/8"            | 1/2"               | 5/8"          | 3/4"                                                            | 7/8"                       | 1"         | 1 1/4" |  |  |  |
| Minimum Embedment Depth                | h <sub>ef,min</sub> | in.     | 2 3/8           | 2 3/4              | 3 1/8         | 3 1/2                                                           | 3 1/2                      | 4          | 5      |  |  |  |
|                                        | GI,IIIII            | (mm)    | (60)            | (70)               | (79)          | (89)                                                            | (89)                       | (102)      | (127)  |  |  |  |
| Maximum Embedment Depth                | h <sub>ef,max</sub> | in.     | 7 1/2           | 10                 | 12 1/2        | 15                                                              | 17 1/2                     | 20         | 25     |  |  |  |
|                                        | •• er,max           | (mm)    | (191)           | (254)              | (318)         | (381)                                                           | (445)                      | (508)      | (635)  |  |  |  |
| Effectiveness Factor for               | k <sub>c,cr</sub>   | in-lb   |                 |                    |               | 17                                                              |                            |            |        |  |  |  |
| Cracked Concrete                       | n c,cr              | (SI)    | (7)             |                    |               |                                                                 |                            |            |        |  |  |  |
| Effectiveness Factor for               | k                   | in-lb   | -lb 24          |                    |               |                                                                 |                            |            |        |  |  |  |
| Uncracked Concrete                     | k <sub>c,uncr</sub> | (SI)    |                 |                    |               |                                                                 |                            |            |        |  |  |  |
| Minimum Chasing Distance               |                     | in.     | 1 7/8           | 2 1/2              | 3             | 3 3/4                                                           | 4 1/4                      | 4 3/4      | 5 7/8  |  |  |  |
| Minimum Spacing Distance               | S <sub>min</sub>    | (mm)    | (48)            | (64)               | (76)          | (95)                                                            | (108)                      | (121)      | (149)  |  |  |  |
|                                        |                     | in.     | 1 5/8           | 1 3/4              | 2             | 2 3/8                                                           | 2 1/2                      | 2 3/4      | 3 1/4  |  |  |  |
| Minimum Edge Distance                  | C <sub>min</sub>    | (mm)    | (41)            | (44)               | (51)          | (60)                                                            | (64)                       | (70)       | (83)   |  |  |  |
|                                        |                     | (11111) | · · ·           | ``'                | For smaller   | For smaller edge distances see section 4.1.9 in ICC-ES ESR-4535 |                            |            |        |  |  |  |
| Minimum Concrete Thickness             | h <sub>min</sub>    | in.     |                 | + 1.25             |               | h <sub>ef</sub> + 2d <sub>0.</sub> w                            | here d <sub>a</sub> is the | hole diame | er     |  |  |  |
| Minimum Concrete Thickness             | '' min              | (mm)    | (h <sub>e</sub> | <sub>f</sub> + 30) |               | Hef · ZQ <sub>0</sub> , W                                       |                            |            |        |  |  |  |
| Critical Edge Distance                 |                     |         |                 |                    | See section 4 | 1 10 in 100                                                     |                            | 05         |        |  |  |  |
| (Uncracked Concrete Only)              | C <sub>ac</sub>     |         |                 | 3                  | See section 4 | .1.10 IN ICC-                                                   | -ES ESR-45                 | 30         |        |  |  |  |
| Strength Reduction Factor for Tension, |                     |         |                 |                    |               |                                                                 |                            |            |        |  |  |  |
| Concrete Failure Mode,                 | φ                   |         |                 |                    |               | 0.65                                                            |                            |            |        |  |  |  |
| Condition B <sup>2</sup>               |                     |         |                 |                    |               |                                                                 |                            |            |        |  |  |  |
| Strength Reduction Factor for Shear,   |                     |         |                 |                    |               |                                                                 |                            |            |        |  |  |  |
| Concrete Failure Mode,                 | φ                   |         |                 |                    |               | 0.70                                                            |                            |            |        |  |  |  |
| Condition B <sup>2</sup>               |                     |         |                 |                    |               |                                                                 |                            |            |        |  |  |  |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

<sup>1</sup>Additional setting information is decribed the installation instructions.

<sup>2</sup> Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of  $\phi$  applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 1.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318-11 D.4.4.



## **Technical Data**



# **TABLE 9:** ULTRABOND HYB-2CC **BOND STRENGTH** design information for **THREADED ROD** in holes drilled with a **HAMMER DRILL** and **CARBIDE BIT**<sup>1,2,3</sup>

|                                                                        |                                                            | Design Information                                    |                                                          | Symbol                                      | Units          |                 |                 | Thr             | eaded I         | Rod             |                 |                 |
|------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|---------------------------------------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                                                                        |                                                            | Beolgii Information                                   |                                                          | Cymson                                      | onito          | 3/8"            | 1/2"            | 5/8"            | 3/4"            | 7/8"            | 1"              | 1 1/4"          |
|                                                                        | Ν                                                          | linimum Embedment D                                   | epth                                                     | h <sub>ef,min</sub>                         | in.<br>(mm)    | 2 3/8<br>(60)   | 2 3/4<br>(70)   | 3 1/8<br>(79)   | 3 1/2<br>(89)   | 3 1/2<br>(89)   | 4<br>(102)      | 5<br>(127)      |
|                                                                        | М                                                          | epth                                                  | h <sub>ef,max</sub>                                      | in.<br>(mm)                                 | 7 1/2<br>(191) | 10<br>(254)     | 12 1/2<br>(318) | 15<br>(381)     | 17 1/2<br>(445) | 20<br>(508)     | 25<br>(635)     |                 |
| Maximum Long<br>Term Temperature<br><b>122 °F</b> (50 °C)              |                                                            | Cracked Concrete<br>Characteristic<br>Bond Strength   | With Sustained Load<br>or No sustained Load <sup>4</sup> | T <sub>k,cr</sub>                           | psi<br>(MPa)   | 1,040<br>(7.2)  | 1,040<br>(7.2)  | 1,110<br>(7.7)  | 1,220<br>(8.4)  | 1,210<br>(8.3)  | 1,205<br>(8.3)  | 1,145<br>(7.9)  |
| Maximum Short<br>Term Temperature<br><b>176 °F</b> 80 °C) <sup>3</sup> | Temperature                                                | Uncracked Concrete<br>Characteristic<br>Bond Strength | With Sustained Load or No sustained Load <sup>4</sup>    | ${\cal T}_{k,uncr}$                         | psi<br>(MPa)   | 2,600<br>(17.9) | 2,415<br>(16.7) | 2,260<br>(15.6) | 2,140<br>(14.8) | 2,055<br>(14.2) | 2,000<br>(13.8) | 1,990<br>(13.7) |
| Maximum Long<br>Term Temperature<br><b>161 °F</b> (72 °C)              | Cracked Concrete<br>Characteristic<br>Bond Strength        | With Sustained Load or No sustained Load <sup>4</sup> | ${\cal T}_{k,cr}$                                        | psi<br>(MPa)                                | 905<br>(6.2)   | 905<br>(6.2)    | 965<br>(6.7)    | 1,060<br>(7.3)  | 1,055<br>(7.3)  | 1,050<br>(7.2)  | 995<br>(6.9)    |                 |
| Term <sup>-</sup>                                                      | mum Short<br>Temperature<br><b>F</b> (120 °C) <sup>3</sup> | Uncracked Concrete<br>Characteristic<br>Bond Strength | With Sustained Load or No sustained Load <sup>4</sup>    | ${\cal T}_{k,uncr}$                         | psi<br>(MPa)   | 2,265<br>(15.6) | 2,100<br>(14.5) | 1,970<br>(13.6) | 1,865<br>(12.9) | 1,785<br>(12.3) | 1,740<br>(12.0) | 1,730<br>(11.9) |
|                                                                        |                                                            | Cracked Concrete<br>Characteristic                    | With Sustained Load <sup>4</sup>                         | T <sub>k,cr</sub>                           | psi<br>(MPa)   | 650<br>(4.5)    | 655<br>(4.5)    | 695<br>(4.8)    | 765<br>(5.3)    | 760<br>(5.2)    | 755<br>(5.2)    | 720<br>(5.0)    |
| Term <sup>-</sup><br><b>212</b> °                                      | mum Long<br>Temperature<br>° <b>F</b> (100 °C)             | Bond Strength                                         | No Sustained<br>Load                                     | - 6,07                                      | psi<br>(MPa)   | 800<br>(5.5)    | 806<br>(5.6)    | 855<br>(5.9)    | 941<br>(6.5)    | 935<br>(6.4)    | 929<br>(6.4)    | 886<br>(6.1)    |
| Term <sup>-</sup>                                                      | mum Short<br>Femperature<br><b>F</b> (160 °C) <sup>3</sup> | Uncracked Concrete<br>Characteristic                  | With Sustained Load <sup>4</sup>                         | T <sub>k,uncr</sub>                         | psi<br>(MPa)   | 1,630<br>(11.2) | 1,515<br>(10.4) | 1,420<br>(9.8)  | 1,345<br>(9.3)  | 1,290<br>(8.9)  | 1,255<br>(8.7)  | 1,250<br>(8.6)  |
|                                                                        |                                                            | Bond Strength                                         | No Sustained<br>Load                                     | ▪ K,uncr                                    | psi<br>(MPa)   | 2,005<br>(13.8) | 1,863<br>(12.8) | 1,747<br>(12.0) | 1,654<br>(11.4) | 1,587<br>(10.9) | 1,544<br>(10.6) | 1,538<br>(10.6) |
|                                                                        | Reduc                                                      | tion Factor for Seismic                               | Tension <sup>5</sup>                                     | α <sub>N,seis</sub>                         |                | 0.95            |                 |                 |                 |                 |                 |                 |
| ΩĘ                                                                     | Dry Concrete                                               |                                                       |                                                          | <b>¢</b> <sub>d</sub>                       |                |                 |                 |                 | 0.65            |                 |                 |                 |
| Periodic<br>Inspection                                                 | Eactors for Permissible                                    |                                                       | Water Saturated<br>Concrete                              | <b>¢</b> <sub>ws</sub>                      |                |                 | 0.55            |                 |                 |                 |                 |                 |
| -                                                                      |                                                            |                                                       | Water-Filled Holes<br>in Concrete                        | $oldsymbol{\phi}_{\scriptscriptstyle W\!f}$ |                |                 |                 |                 | 0.45            |                 |                 |                 |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

<sup>1</sup>Characteristic bond strength values correspond to concrete compressive strength  $f'_c = 2,500 \text{ psi}$  (17.2 MPa). For concrete compressive strength  $f'_c$  between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of ( $f'_c / 2,500$ )<sup>0.10</sup>.

<sup>2</sup>Lightweight concrete may be used by applying a reduction factor as given in ACI 318-14 17.2.6 or ACI 318-11 Appendix D Section D.3.6 as applicable.

<sup>3</sup>Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a results of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

<sup>4</sup>Characteristic bond strength values are for sustained loads (when noted), including dead and live loads.

<sup>5</sup>For structures assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by αN,seis.

# **Technical Data**



TABLE 10: ULTRABOND HYB-2CC STEEL design information for REBAR<sup>1</sup>

| Desir                 |                                                       | Questo              | Unite                                 |                 |                  |                   | Reba              | r Size                        |                                            |                   |                    |  |
|-----------------------|-------------------------------------------------------|---------------------|---------------------------------------|-----------------|------------------|-------------------|-------------------|-------------------------------|--------------------------------------------|-------------------|--------------------|--|
| Desig                 | n Information                                         | Symbol              | Units                                 | #3              | #4               | #5                | #6                | #7                            | #8                                         | #9                | #10                |  |
| Nominal               | Anchor Diameter                                       | d <sub>a</sub>      | in.<br>(mm)                           | 0.375<br>(9.5)  | 0.500<br>(12.7)  | 0.625<br>(15.9)   | 0.750<br>(19.1)   | 0.875<br>(22.2)               | 1.000<br>(25.4)                            | 1.125<br>(28.6)   | 1.250<br>(31.8)    |  |
| Cross-                | Rebar<br>Sectional Area <sup>3</sup>                  | A <sub>se</sub>     | in <sup>2</sup><br>(mm <sup>2</sup> ) | 0.110<br>(71)   | 0.200<br>(129)   | 0.310<br>(200)    | 0.440<br>(284)    | 0.600<br>(387)                | 0.790<br>(510)                             | 1.000<br>(645)    | 1.270<br>(819)     |  |
|                       | Nominal Strength<br>as Governed by                    | N <sub>sa</sub>     | lb.<br>(kN)                           | 6,600<br>(29.4) | 12,000<br>(53.4) | 18,600<br>(82.7)  | 26,400<br>(117.4) | Grade 40 reinforcing bars are |                                            |                   |                    |  |
| Steel Strength        |                                                       | V <sub>sa</sub>     | lb.<br>(kN)                           | 3,960<br>(17.6) | 7,200<br>(32.0)  | 11,160<br>(49.6)  | 15,840<br>(70.5)  |                               | ide 40 reinf<br>only availa<br>hrough #6 ہ | ble in sizes      | 6                  |  |
| ASTM A615<br>Grade 40 | Reduction Factor<br>for Seismic Shear                 | α <sub>V,seis</sub> |                                       |                 | 0.               | 65                |                   |                               |                                            |                   |                    |  |
| AS<br>O               | Strength Reduction<br>Factor for Tension <sup>2</sup> | φ                   |                                       |                 |                  |                   | 0.                | 65                            |                                            |                   |                    |  |
|                       | Strength Reduction<br>Factor for Shear <sup>2</sup>   | φ                   |                                       |                 |                  |                   | 0.                | 60                            |                                            |                   |                    |  |
|                       | Nominal Strength<br>as Governed by<br>Steel Strength  | N <sub>sa</sub>     | lb.<br>(kN)                           | 9,900<br>(44.0) | 18,000<br>(80.1) | 27,900<br>(124.1) | 39,600<br>(176.1) | 54,000<br>(240.2)             | 71,100<br>(316.3)                          | 90,000<br>(400.3) | 114,300<br>(508.4) |  |
| 15                    |                                                       | V <sub>sa</sub>     | lb.<br>(kN)                           | 5,940<br>(26.4) | 10,800<br>(48.0) | 16,740<br>(74.5)  | 23,760<br>(105.7) | 32,400<br>(144.1)             | 42,660<br>(189.8)                          | 54,000<br>(240.2) | 68,580<br>(305.1)  |  |
| ASTM A615<br>Grade 60 | Reduction Factor<br>for Seismic Shear                 | α <sub>V,seis</sub> |                                       | 0.65            |                  |                   |                   |                               |                                            |                   |                    |  |
| AS                    | Strength Reduction<br>Factor for Tension <sup>2</sup> | φ                   |                                       |                 |                  |                   | 0.                | 65                            |                                            |                   |                    |  |
|                       | Strength Reduction<br>Factor for Shear <sup>2</sup>   | φ                   |                                       |                 |                  |                   | 0.                | 60                            |                                            |                   |                    |  |
|                       | Nominal Strength<br>as Governed by                    | N <sub>sa</sub>     | lb.<br>(kN)                           | 8,800<br>(39.1) | 16,000<br>(71.2) | 24,800<br>(110.3) | 35,200<br>(156.6) | 48,000<br>(213.5)             | 63,200<br>(281.1)                          | 80,000<br>(355.9) | 101,600<br>(451.9) |  |
| 90                    | Steel Strength                                        | V <sub>sa</sub>     | lb.<br>(kN)                           | 5,280<br>(23.5) | 9,600<br>(42.7)  | 14,880<br>(66.2)  | 21,120<br>(93.9)  | 28,800<br>(128.1)             | 37,920<br>(168.7)                          | 48,000<br>(213.5) | 60,960<br>(271.2)  |  |
| ASTM A706<br>Grade 60 | Reduction Factor<br>for Seismic Shear                 | α <sub>V,seis</sub> |                                       |                 |                  |                   | 0.                | 65                            |                                            |                   |                    |  |
| AS<br>G               | Strength Reduction<br>Factor for Tension <sup>2</sup> | φ                   |                                       |                 |                  |                   | 0.                | 75                            |                                            |                   |                    |  |
|                       | Strength Reduction<br>Factor for Shear <sup>2</sup>   | φ                   |                                       |                 |                  |                   | 0.                | 65                            |                                            |                   |                    |  |

For SI: 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

<sup>1</sup> Values provided for common rod material types are based on specified strength and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable.

<sup>2</sup> For use with load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318-11 D4.4.

<sup>3</sup> Cross-sectional area is minimum stress area applicable for either tension or shear.

# **Technical Data**



# **TABLE 11:** ULTRABOND HYB-2CC **CONCRETE BREAKOUT** design information for **REBAR** in holes drilled with a **HAMMER DRILL** and **CARBIDE BIT**<sup>1</sup>

| Design Information                                                                              | Symbol              | Units         |                |                 |                 | Reba                 | r Size          |                |                 |                |  |  |
|-------------------------------------------------------------------------------------------------|---------------------|---------------|----------------|-----------------|-----------------|----------------------|-----------------|----------------|-----------------|----------------|--|--|
| Design mormation                                                                                | Symbol              | Units         | #3             | #4              | #5              | #6                   | #7              | #8             | #9              | #10            |  |  |
| Minimum Embedment Depth                                                                         | h <sub>ef,min</sub> | in.<br>(mm)   | 2 3/8<br>(60)  | 2 3/4<br>(70)   | 3 1/8<br>(79)   | 3 1/2<br>(89)        | 3 1/2<br>(89)   | 4<br>(102)     | 4 1/2<br>(114)  | 5<br>(127)     |  |  |
| Maximum Embedment Depth                                                                         | h <sub>ef,max</sub> | in.<br>(mm)   | 7 1/2<br>(191) | 10<br>(254)     | 12 1/2<br>(318) | 15<br>(381)          | 17 1/2<br>(445) | 20<br>(508)    | 22 1/2<br>(572) | 25<br>(635)    |  |  |
| Effectiveness Factor for<br>Cracked Concrete                                                    | k <sub>c,cr</sub>   | in-lb<br>(SI) |                |                 |                 | 1                    | 7<br>7)         |                |                 |                |  |  |
| Effectiveness Factor for<br>Uncracked Concrete                                                  | k <sub>c,uncr</sub> | in-lb<br>(SI) | (SI) (10)      |                 |                 |                      |                 |                |                 |                |  |  |
| Minimum Spacing Distance                                                                        | S <sub>min</sub>    | in.<br>(mm)   | 1 7/8<br>(48)  | 2 1/2<br>(64)   | 3<br>(76)       | 3 3/4<br>(95)        | 4 1/4<br>(108)  | 4 3/4<br>(121) | 5 1/4<br>(133)  | 5 7/8<br>(149) |  |  |
| Minimum Edge Distance                                                                           | C <sub>min</sub>    | in.<br>(mm)   | 1 5/8<br>(41)  | 1 3/4<br>(44)   | 2<br>(51)       | 2 3/8<br>(60)        | 2 1/2<br>(64)   | 2 3/4<br>(70)  | 3<br>(76)       | 3 1/4<br>(83)  |  |  |
|                                                                                                 |                     | ()            | (+1)           | ()              | For sma         | ller edge dis        | tances see S    | Section 4.1.9  | in ICC-ES E     | SR-4535        |  |  |
| Minimum Concrete Thickness                                                                      | h <sub>min</sub>    | in.<br>(mm)   |                | + 1.25<br>+ 30) |                 | h <sub>ef</sub> + 20 | $I_0$ , where d | ) is the hol   | e diameter      |                |  |  |
| Critical Edge Distance<br>(Uncracked Concrete Only)                                             | C <sub>ac</sub>     |               |                |                 | See Sect        | ion 4.1.10 i         | n ICC-ES E      | ESR-4535       |                 |                |  |  |
| Strength Reduction Factor<br>for Tension,<br>Concrete Failure Mode,<br>Condition B <sup>2</sup> | φ                   |               | 0.65           |                 |                 |                      |                 |                |                 |                |  |  |
| Strength Reduction Factor<br>for Shear,<br>Concrete Failure Mode,<br>Condition B <sup>2</sup>   | φ                   |               | 0.70           |                 |                 |                      |                 |                |                 |                |  |  |

For SI: 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

<sup>1</sup> Additional setting information is decribed in Figure 6, installation instructions.

<sup>2</sup> Condition A requires supplemental reinforcement, while condition B applies where supplemental reinforcement is not provided or where pullout or pryout governes, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of  $\phi$  applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 Section 9.2, as applicable, as set forth in ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318-11 D.4.4.



## **Technical Data**



# **TABLE 12:** ULTRABOND HYB-2CC **BOND STRENGTH** design information for **REBAR** in holes drilled with a **HAMMER DRILL** and **CARBIDE BIT**<sup>1,2</sup>

|                        |                                                              | esign Information                                        |                                                                | Symbol                         | Units        |                 |                 |                 | Reba            | r Size          |                 |                 |                 |
|------------------------|--------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|--------------------------------|--------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                        |                                                              |                                                          |                                                                | Symbol                         | Units        | #3              | #4              | #5              | #6              | #7              | #8              | #9              | #10             |
|                        | Minin                                                        | num Embedment [                                          | Depth                                                          | h <sub>ef,min</sub>            | in.<br>(mm)  | 2 3/8<br>(60)   | 2 3/4<br>(70)   | 3 1/8<br>(79)   | 3 1/2<br>(89)   | 3 1/2<br>(89)   | 4<br>(102)      | 4 1/2<br>(114)  | 5<br>(127)      |
|                        | Maxir                                                        | num Embedment [                                          | Depth                                                          | h <sub>ef,max</sub>            | in.<br>(mm)  | 7 1/2<br>(191)  | 10<br>(254)     | 12 1/2<br>(318) | 15<br>(381)     | 17 1/2<br>(445) | 20<br>(508)     | 22 1/2<br>(572) | 25<br>(635)     |
| Term <b>122</b>        | imum Long<br>Temperature<br>° <b>F</b> (50 °C)               | Cracked<br>Concrete<br>Characteristic<br>Bond Strength   | With Sustained<br>Load<br>or No sustained<br>Load <sup>4</sup> | ${\cal T}_{k,cr}$              | psi<br>(MPa) | 1,090<br>(7.5)  | 1,055<br>(7.3)  | 1,130<br>(7.8)  | 1,170<br>(8.1)  | 1,175<br>(8.1)  | 1,155<br>(8.0)  | 1,140<br>(7.9)  | 1,165<br>(8.0)  |
| Term                   | mum Short<br>Temperature<br>° <b>F</b> 80 °C) <sup>3</sup>   | Uncracked<br>Concrete<br>Characteristic<br>Bond Strength | With Sustained<br>Load<br>or No sustained<br>Load <sup>4</sup> | T <sub>k,uncr</sub>            | psi<br>(MPa) | 2,200<br>(15.2) | 2,100<br>(14.5) | 2,030<br>(14.0) | 1,970<br>(13.6) | 1,920<br>(13.2) | 1,880<br>(13.0) | 1,845<br>(12.7) | 1,815<br>(12.5) |
| Term <b>161</b>        | imum Long<br>Temperature<br>° <b>F</b> (72 °C)               | Cracked<br>Concrete<br>Characteristic<br>Bond Strength   | With Sustained<br>Load<br>or No sustained<br>Load <sup>4</sup> | ${\cal T}_{k,cr}$              | psi<br>(MPa) | 945<br>(6.5)    | 915<br>(6.3)    | 980<br>(6.8)    | 1,015<br>(7.0)  | 1,020<br>(7.0)  | 1,005<br>(6.9)  | 995<br>(6.9)    | 1,010<br>(7.0)  |
| Term                   | mum Short<br>Temperature<br>? <b>F</b> (120 °C) <sup>3</sup> | Uncracked<br>Concrete<br>Characteristic<br>Bond Strength | With Sustained<br>Load<br>or No sustained<br>Load <sup>4</sup> | T <sub>k,uncr</sub>            | psi<br>(MPa) | 1,915<br>(13.2) | 1,830<br>(12.6) | 1,765<br>(12.2) | 1,715<br>(11.8) | 1,670<br>(11.5) | 1,635<br>(11.3) | 1,615<br>(11.1) | 1,580<br>(10.9) |
|                        |                                                              | Cracked<br>Concrete                                      | With Sustained<br>Load <sup>4</sup>                            | T <sub>k.cr</sub>              | psi<br>(MPa) | 680<br>(4.7)    | 660<br>(4.6)    | 705<br>(4.9)    | 735<br>(5.1)    | 735<br>(5.1)    | 725<br>(5.0)    | 715<br>(4.9)    | 730<br>(5.0)    |
| Term 212               | imum Long<br>Temperature<br>° <b>F</b> (100 °C)              | Characteristic<br>Bond Strength                          | No Sustained Load                                              | I k,cr                         | psi<br>(MPa) | 836<br>(5.8)    | 812<br>(5.6)    | 867<br>(6.0)    | 904<br>(6.2)    | 904<br>(6.2)    | 892<br>(6.1)    | 879<br>(6.1)    | 898<br>(6.2)    |
| Term                   | mum Short<br>Temperature<br>2 <b>F</b> (160 °C) <sup>3</sup> | Uncracked<br>Concrete                                    | With Sustained<br>Load <sup>4</sup>                            | T <sub>kuncr</sub>             | psi<br>(MPa) | 1,380<br>(9.5)  | 1,315<br>(9.1)  | 1,270<br>(8.8)  | 1,235<br>(8.5)  | 1,205<br>(8.3)  | 1,180<br>(8.1)  | 1,155<br>(8.0)  | 1,140<br>(7.9)  |
|                        |                                                              | Characteristic<br>Bond Strength                          | No Sustained Load                                              | ' K,uncr                       | psi<br>(MPa) | 1,697<br>(11.7) | 1,617<br>(11.2) | 1,562<br>(10.8) | 1,519<br>(10.5) | 1,482<br>(10.2) | 1,451<br>(10.0) | 1,421<br>(9.8)  | 1,402<br>(9.7)  |
|                        | Reduction                                                    | Factor for Seismic                                       | c Tension⁵                                                     | α <sub>N,seis</sub>            |              | 0.              | 95              |                 |                 | 1.              | 00              |                 |                 |
| 0 5                    | <u>.</u>                                                     | h Daduati                                                | Dry Concrete                                                   | <b>Ø</b> d                     |              |                 |                 |                 | 0.              | 65              |                 |                 |                 |
| Periodic<br>Inspection | Factors for                                                  | h Reduction<br>or Permissible<br>on Conditions           | Water Saturated<br>Concrete                                    | $\phi_{\scriptscriptstyle WS}$ |              |                 |                 |                 | 0.              | 55              |                 |                 |                 |
| <u>н</u> п             | otanatit                                                     |                                                          | Water-Filled Holes<br>in Concrete                              | $\phi_{\scriptscriptstyle Wf}$ |              |                 |                 |                 | 0.              | 45              |                 |                 |                 |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

<sup>1</sup>Characteristic bond strength values correspond to concrete compressive strength  $f'_c = 2,500 \text{ psi}$  (17.2 MPa). For concrete compressive strength  $f'_c$  between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of ( $f'_c / 2,500$ )<sup>0.10</sup>. See Section 4.1.4 ICC-ESR 4535.

<sup>2</sup>Lightweight concrete may be used by applying a reduction factor as given in ACI 318-14 17.2.6 or ACI 318-11 Appendix D Section D.3.6 as applicable.

<sup>3</sup>Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a results of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

<sup>4</sup>Characteristic bond strengths are for sustained loads (when noted) including live and dead loads.

<sup>5</sup>For structures assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by αN,seis.

### **Technical Data**



### **TABLE 13:** ULTRABOND HYB-2CC STEEL design information for METRIC THREADED ROD<sup>1</sup>

|                                             | JETRABOND HTB-200                                     |                     | -                   |                |                |                 | ic Threaded     | Rod              |                  |                  |
|---------------------------------------------|-------------------------------------------------------|---------------------|---------------------|----------------|----------------|-----------------|-----------------|------------------|------------------|------------------|
| Desi                                        | gn Information                                        | Symbol              | Units               | M10            | M12            | M16             | M20             | M24              | M27              | M30              |
| Nomina                                      | al Anchor Diameter                                    | d <sub>a</sub>      | mm                  | 10             | 12             | 16              | 20              | 24               | 27               | 30               |
|                                             |                                                       | ∽ a                 | (in.)               | (0.39)         | (0.47)         | (0.63)          | (0.79)          | (0.94)           | (1.06)           | (1.18)           |
| Threaded Ro                                 | od Cross-Sectional Area                               | A se                | mm <sup>2</sup>     | 58.0           | 84.3           | 157             | 245             | 353              | 459              | 561              |
|                                             | -                                                     |                     | (in. <sup>2</sup> ) | 0.090          | 0.131          | 0.243           | 0.380           | 0.547            | 0.711            | 0.876            |
|                                             | Nominal Strength                                      | N <sub>sa</sub>     | kN                  | 29.0           | 42.2           | 78.5            | 122.5           | 176.5            | 229.5            | 280.5            |
| œ                                           | as Governed by                                        |                     | (lb)<br>kN          | (6,518)        | (9,473)        | (17,643)        | (27,532)        | (39,668)         | (51,580)         | (63,043)         |
| s 5.                                        | Steel Strength                                        | V <sub>sa</sub>     | (lb)                | 17.4<br>(3911) | 25.3<br>(5684) | 47.1<br>(10586) | 73.5<br>(16519) | 105.9<br>(23801) | 137.7<br>(30948) | 168.3<br>(37826) |
| Clas                                        | Reduction Factor for                                  |                     | (u)                 | (3911)         | (3064)         | (10560)         | (10519)         | (23001)          | (30946)          | (37620)          |
| 38-1 C                                      | Seismic Shear                                         | α <sub>V,seis</sub> |                     |                |                |                 | 0.60            |                  |                  |                  |
| ISO 898-1 Class 5.8                         | Strength Reduction<br>Factor for Tension <sup>2</sup> | φ                   |                     |                |                |                 | 0.65            |                  |                  |                  |
| _                                           | Strength Reduction<br>Factor for Shear <sup>2</sup>   | φ                   |                     |                |                |                 | 0.60            |                  |                  |                  |
|                                             | Nominal Strength                                      | N <sub>sa</sub>     | kN                  | 46.4           | 67.4           | 125.6           | 196             | 282.4            | 367.2            | 448.3            |
| ~                                           |                                                       | sa sa               | (lb)                | (10,428)       | (15,157)       | (28,229)        | (44,051)        | (63,470)         | (82,528)         | (100,868)        |
| ů<br>S                                      | Steel Strength                                        | V <sub>sa</sub>     | kN                  | 27.8           | 40.5           | 75.4            | 117.6           | 169.4            | 220.3            | 269.3            |
| asc                                         |                                                       |                     | (lb)                | (6,257)        | (9,094)        | (16,937)        | (26,431)        | (38,082)         | (49,517)         | (60,521)         |
| ISO 898-1 Class 8.8                         | Reduction Factor for<br>Seismic Shear                 | $\alpha_{V,seis}$   |                     |                |                |                 | 0.60            |                  |                  |                  |
| SO 89                                       | Strength Reduction<br>Factor for Tension <sup>2</sup> | φ                   |                     |                |                |                 | 0.65            |                  |                  |                  |
| <u>0</u>                                    | Strength Reduction                                    |                     |                     |                |                |                 |                 |                  |                  |                  |
|                                             | Factor for Shear <sup>2</sup>                         | φ                   |                     |                |                |                 | 0.60            |                  |                  |                  |
| <u>م</u>                                    |                                                       | N                   | kN                  | 40.6           | 59             | 109.9           | 171.5           | 247.1            | 229.5            | 280.5            |
| Stee                                        | Nominal Strength<br>as Governed by                    | N <sub>sa</sub>     | (lb)                | (9,125)        | (13,263)       | (24,700)        | (38,545)        | (55,536)         | (51,580)         | (63,043)         |
| SSS                                         | Steel Strength                                        | V <sub>sa</sub>     | kN                  | 24.4           | 35.4           | 65.9            | 102.9           | 148.3            | 137.7            | 168.3            |
| inle                                        |                                                       | • sa                | (lb)                | (5,475)        | (7,958)        | (14,820)        | (23,127)        | (33,322)         | (30,948)         | (37,826)         |
| ISO 3506-1, A4 Stainless Steel <sup>3</sup> | Reduction Factor<br>for Seismic Shear                 | α <sub>V,seis</sub> |                     |                |                |                 | 0.60            |                  |                  |                  |
|                                             | Strength Reduction                                    | φ                   |                     |                |                |                 | 0.65            |                  |                  |                  |
| 506                                         | Factor for Tension <sup>2</sup>                       | Ψ                   |                     |                |                |                 | 0.00            |                  |                  |                  |
| ISO 3:                                      | Strength Reduction<br>Factor for Shear <sup>2</sup>   | φ                   |                     |                |                |                 | 0.60            |                  |                  |                  |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

<sup>1</sup>Values provided for common rod material types are based on specified strength and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable. Nuts and washers must comply with requirements for the rod.

<sup>2</sup>The tabulated value of  $\phi$  applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3., as applicable are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318-11 D4.4.

<sup>3</sup>A4-70 Stainless steel (M8-M24); A4-50 Stainless steel (M27-M30).



## **Technical Data**



# **TABLE 14:** ULTRABOND HYB-2CC **CONCRETE BREAKOUT** design information for **METRIC THREADED ROD** in holes drilled with a **HAMMER DRILL** and **CARBIDE BIT**<sup>1</sup>

| Destaus la forme effere                                                                         | Ormhal              | 11-24-        |               |                 | Met                      | ric Threaded                   | Rod                            |                             |                             |  |  |
|-------------------------------------------------------------------------------------------------|---------------------|---------------|---------------|-----------------|--------------------------|--------------------------------|--------------------------------|-----------------------------|-----------------------------|--|--|
| Design Information                                                                              | Symbol              | Units         | M10           | M12             | M16                      | M20                            | M24                            | M27                         | M30                         |  |  |
| Minimum Embedment Depth                                                                         | h <sub>ef,min</sub> | in.<br>(mm)   | 60<br>(2.4)   | 70<br>(2.8)     | 80<br>(3.1)              | 90<br>(3.5)                    | 96<br>(3.8)                    | 108<br>(4.3)                | 120<br>(4.7)                |  |  |
| Maximum Embedment Depth                                                                         | h <sub>ef,max</sub> | in.<br>(mm)   | 200<br>(7.9)  | 240<br>(9.4)    | 320<br>(12.6)            | 400<br>(15.7)                  | 480<br>(18.9)                  | 540<br>(21.3)               | 600<br>(23.6)               |  |  |
| Effectiveness Factor for<br>Cracked Concrete                                                    | k <sub>c,cr</sub>   | SI<br>(in-lb) |               | •               |                          | 7<br>(17)                      |                                |                             |                             |  |  |
| Effectiveness Factor for<br>Uncracked Concrete                                                  | k <sub>c,uncr</sub> | SI<br>(in-lb) | lb) (24)      |                 |                          |                                |                                |                             |                             |  |  |
| Minimum Spacing Distance                                                                        | S <sub>min</sub>    | mm<br>(in.)   | 50<br>(2)     | 60<br>(2 3/8)   | 75<br>(3)                | 95<br>(3 3/4)                  | 115<br>(4 1/2)                 | 125<br>(5)                  | 140<br>(5 1/2)              |  |  |
| Minimum Edge Distance                                                                           | C <sub>min</sub>    | mm<br>(in.)   | 40<br>(1 5/8) | 45<br>(1 3/4)   | 50<br>(2)<br>For smaller | 60<br>(2 3/8)<br>edge distance | 65<br>(2 1/2)<br>s see Section | 75<br>(3)<br>4.1.9 in ICC-E | 80<br>(3 1/8)<br>S ESR-4535 |  |  |
| Minimum Concrete Thickness                                                                      | h <sub>min</sub>    | mm<br>(in.)   |               | + 30<br>+ 1.25) |                          | $h_{ef} + 2d_0^3 w$            | /here d <sub>0</sub> is the    | hole diameter               |                             |  |  |
| Critical Edge Distance<br>(Uncracked Concrete Only)                                             | C <sub>ac</sub>     |               |               |                 | See Section              | 4.1.10 in ICC-                 | ES ESR-4535                    | i                           |                             |  |  |
| Strength Reduction Factor<br>for Tension,<br>Concrete Failure Mode,<br>Condition B <sup>2</sup> | φ                   |               | 0.65          |                 |                          |                                |                                |                             |                             |  |  |
| Strength Reduction Factor<br>for Shear,<br>Concrete Failure Mode,<br>Condition B <sup>2</sup>   | φ                   |               | 0.70          |                 |                          |                                |                                |                             |                             |  |  |

For SI: 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

<sup>1</sup>Additional setting information is decribed in Figure 6, installation instructions.

<sup>2</sup> Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of  $\phi$  applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-14 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318-11 D.4.4.



## **Technical Data**



# **TABLE 15:** ULTRABOND HYB-2CC **BOND STRENGTH** design information for **METRIC THREADED ROD** in holes drilled with a **HAMMER DRILL** and **CARBIDE BIT**<sup>1,2</sup>

|                        |                                                                   | Design Information                                                |                                                          | Symbol                         | Units        |                 |                 | Metric          | Threade         | d Rod           |                 |                 |
|------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------|--------------------------------|--------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                        |                                                                   | Design mormation                                                  |                                                          | Cymbol                         | onita        | M10             | M12             | M16             | M20             | M24             | M27             | M30             |
|                        |                                                                   | Minimum Embedment De                                              | pth                                                      | h <sub>ef,min</sub>            | mm<br>(in.)  | 60<br>(2.4)     | 70<br>(2.8)     | 80<br>(3.1)     | 90<br>(3.5)     | 96<br>(3.8)     | 108<br>(4.3)    | 120<br>(4.7)    |
|                        |                                                                   | Maximum Embedment De                                              | pth                                                      | h <sub>ef,max</sub>            | mm<br>(in.)  | 200<br>(7.9)    | 240<br>(9.4)    | 320<br>(12.6)   | 400<br>(15.7)   | 480<br>(18.9)   | 540<br>(21.3)   | 600<br>(23.6)   |
| Term<br><b>12</b>      | ximum Long<br>Temperature<br><b>2 °F</b> (50 °C)                  | Cracked Concrete<br>Characteristic<br>Bond Strength               | With Sustained Load<br>or No sustained Load <sup>4</sup> | T <sub>k,cr</sub>              | MPa<br>(psi) | 7.2<br>(1,039)  | 7.2<br>(1,043)  | 7.7<br>(1,110)  | 8.4<br>(1,217)  | 8.3<br>(1,209)  | 8.3<br>(1,204)  | 7.9<br>(1,149)  |
| Term                   | ximum Short<br>Temperature<br><b>6 °F</b> 80 °C) <sup>3</sup>     | Uncracked Concrete<br>Characteristic<br>Bond Strength             | With Sustained Load<br>or No sustained Load <sup>4</sup> | T <sub>k,uncr</sub>            | MPa<br>(psi) | 17.7<br>(2,571) | 16.9<br>(2,453) | 15.6<br>(2,256) | 14.6<br>(2,112) | 13.9<br>(2,020) | 13.7<br>(1,985) | 13.7<br>(1,980) |
| Term<br>16             | ximum Long<br>n Temperature<br><b>1 °F</b> (72 °C)                | Cracked Concrete<br>Characteristic<br>Bond Strength               | With Sustained Load<br>or No sustained Load <sup>4</sup> | T <sub>k,cr</sub>              | MPa<br>(psi) | 6.2<br>(904)    | 6.3<br>(908)    | 6.7<br>(966)    | 7.3<br>(1,058)  | 7.2<br>(1,052)  | 7.2<br>(1,047)  | 6.9<br>(999)    |
| Term                   | ximum Short<br>n Temperature<br>s <b>°F</b> (120 °C) <sup>3</sup> | C) Bond Strength<br>ort Uncracked Concrete<br>ture Characteristic | With Sustained Load<br>or No sustained Load <sup>4</sup> | T <sub>k,uncr</sub>            | MPa<br>(psi) | 15.4<br>(2,237) | 14.7<br>(2,134) | 13.5<br>(1,963) | 12.7<br>(1,837) | 12.1<br>(1,757) | 11.9<br>(1,727) | 11.9<br>(1,723) |
|                        |                                                                   | Cracked Concrete<br>Characteristic                                | With Sustained<br>Load <sup>4</sup>                      | T <sub>k,cr</sub>              | MPa<br>(psi) | 4.5<br>(651)    | 4.5<br>(654)    | 4.8<br>(696)    | 5.3<br>(763)    | .3 5.2 5.2      | -               | 5.0<br>(720)    |
| Term<br><b>212</b>     | ximum Long<br>Temperature<br><b>2 °F</b> (100 °C)                 | Bond Strength                                                     | No Sustained<br>Load                                     | ' k,cr                         | MPa<br>(psi) | 5.5<br>(803)    | 5.5<br>(803)    | 5.9<br>(856)    | 6.5<br>(945)    | 6.4<br>(927)    | 6.4<br>(927)    | 6.2<br>(892)    |
| Term                   | ximum Short<br>Temperature<br>° <b>F</b> (160 °C) <sup>3</sup>    | Uncracked Concrete<br>Characteristic                              | With Sustained<br>Load <sup>4</sup>                      | т                              | MPa<br>(psi) | 11.1<br>(1,612) | 10.6<br>(1,538) | 9.8<br>(1,415)  | 9.1<br>(1,324)  | 8.7<br>(1,266)  | 8.6<br>(1,245)  | 8.6<br>(1,241)  |
|                        |                                                                   | Bond Strength                                                     | No Sustained<br>Load                                     | T <sub>k,uncr</sub>            | MPa<br>(psi) | 13.7<br>(1,980) | 13.0<br>(1,891) | 12.1<br>(1,748) | 11.2<br>(1,623) | 10.7<br>(1,552) | 10.6<br>(1,534) | 10.6<br>(1,534) |
|                        | Reduction Factor for Seismic Tension <sup>5</sup>                 |                                                                   | ension <sup>5</sup>                                      | α <sub>N,seis</sub>            |              |                 |                 |                 | 0.95            |                 |                 |                 |
| =                      |                                                                   |                                                                   | Dry Concrete                                             | <b>¢</b> d                     |              |                 |                 |                 | 0.65            |                 |                 |                 |
| Periodic<br>Inspection | Facto                                                             | ength Reduction<br>rs for Permissible<br>Ilation Conditions       | Water Saturated<br>Concrete                              | <b>ø</b> ws                    |              |                 |                 |                 | 0.55            |                 |                 |                 |
| 느 드                    |                                                                   |                                                                   | Water-Filled Holes<br>in Concrete                        | $\phi_{\scriptscriptstyle Wf}$ |              |                 |                 |                 | 0.45            |                 |                 |                 |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

<sup>1</sup>Characteristic bond strength values correspond to concrete compressive strength  $f'_c$  =2,500 psi (17.2 MPa). For concrete compressive strength  $f'_c$  between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of ( $f'_c$  /2,500)<sup>0.10</sup>. See Section 4.1.4 ICC-ESR 4535.

<sup>2</sup>Lightweight concrete may be used by applying a reduction factor as given in ACI 318-14 17.2.6 or ACI 318-11 Appendix D Section D.3.6 as applicable.

<sup>3</sup>Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a results of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

<sup>4</sup>Characteristic bond strength values are for sustained loads (when noted), including dead and live loads.

<sup>5</sup>For structures assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by αN,seis.

## **Technical Data**



#### **Metric Rebar Size Design Information** Symbol Units Ø10 Ø12 Ø14 Ø16 Ø20 Ø25 Ø28 Ø32 mm 10 16 20 25 28 12 14 32 Nominal Anchor Diameter d<sub>a</sub> 1.260 (0.315)(0.394)(0.472)(0.551)(0.630)(0.787)1.102 (in.) mm<sup>2</sup> 78.5 113.1 153.9 201.1 314.2 490.9 615.8 804.2 Rebar A<sub>se</sub> **Cross-Sectional Area** (in.<sup>2</sup>)(0.112)(0.175)(0.239)(0.312)(0.487) (0.761)(0.954)(1.247)kΝ 43.2 62.2 84.7 110.6 172.8 270 338.7 442.3 N <sub>sa</sub> Nominal Strength (lb) (9,739)(14,024) (19,088)(24, 932)(38,956) (60, 868)(76, 353)(99,727)as Governed by Steel Strength kΝ 25.9 37.3 50.8 66.4 103.7 162 203.2 265.4 V <sub>sa</sub> DIN 488 BSt 500 (lb) (5,843)(8,414)(11, 453)(14, 959)(23, 373)(36, 521)(45, 812)(59, 836)Reduction Factor for 0.65 α<sub>V.seis</sub> Seismic Shear Strength Reduction 0.65 φ \_\_\_\_ Factor for Tension<sup>2</sup> Strength Reduction 0.60 φ ----Factor for Shear<sup>2</sup>

### TABLE 16: ULTRABOND HYB-2CC STEEL design information for METRIC REBAR<sup>1</sup>

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

<sup>1</sup>Values provided for common rod material types are based on specified strength and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable. Nuts and washers must comply with requirements for the rod.

<sup>2</sup>The tabulated value of  $\phi$  applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3., as applicable are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318-11 D4.4.



## **Technical Data**



# **TABLE 17:** ULTRABOND HYB-2CC **CONCRETE BREAKOUT** design information for **METRIC REBAR** in holes with a **HAMMER DRILL** and **CARBIDE BIT**<sup>1</sup>

| Design Information                                                                           | Sumbol              | Units   |                  |         |           | Metric R            | ebar Size                           |                  |             |          |  |
|----------------------------------------------------------------------------------------------|---------------------|---------|------------------|---------|-----------|---------------------|-------------------------------------|------------------|-------------|----------|--|
| Design Information                                                                           | Symbol              | Units   | Ø10              | Ø12     | Ø14       | Ø16                 | Ø20                                 | Ø25              | Ø28         | Ø32      |  |
| Minimum Embedment Depth                                                                      | h <sub>ef.min</sub> | in.     | 60               | 70      | 75        | 80                  | 90                                  | 100              | 112         | 128      |  |
|                                                                                              | •• er,min           | (mm)    | (2.4)            | (2.8)   | (3.0)     | (3.1)               | (3.5)                               | (3.9)            | (4.4)       | (5.0)    |  |
| Maximum Embedment Depth                                                                      | h <sub>ef,max</sub> | in.     | 200              | 240     | 280       | 320                 | 400                                 | 500              | 560         | 640      |  |
|                                                                                              | ei,iiidx            | (mm)    | (7.9)            | (9.4)   | (9.4)     | (12.6)              | (15.7)                              | (19.7)           | (22)        | 25.2     |  |
| Effectiveness Factor for                                                                     | k <sub>c.cr</sub>   | SI      |                  |         |           |                     | 7                                   |                  |             |          |  |
| Cracked Concrete                                                                             | 0,01                | (in-lb) |                  |         |           | (1                  | 7)                                  |                  |             |          |  |
| Effectiveness Factor for                                                                     | k <sub>c.uncr</sub> | SI      |                  |         |           |                     | 0                                   |                  |             |          |  |
| Uncracked Concrete                                                                           | 0,unor              | (in-lb) |                  |         |           | (2                  | 24)                                 |                  |             |          |  |
| Minimum Spacing Distance                                                                     | S <sub>min</sub>    | mm      | 50               | 60      | 70        | 75                  | 95                                  | 120              | 130         | 150      |  |
|                                                                                              |                     | (in.)   | (2)              | (2 3/8) | (2 3/4)   | (3)                 | (3 3/4)                             | (4 5/8)          | (5 1/4)     | (5 7/8)  |  |
|                                                                                              |                     | mm      | 40               | 45      | 50        | 50                  | 60                                  | 70               | 75          | 85       |  |
| Minimum Edge Distance                                                                        | C <sub>min</sub>    | (in.)   | (1 5/8)          | (1 3/4) | (2)       | (2)                 | (2 3/8)                             | (2 3/4)          | (3)         | (3 1/8)  |  |
|                                                                                              |                     |         |                  |         | For small | er edge dist        | ances see S                         | Section 4.1.9    | in ICC-ES E | ESR-4535 |  |
| Minimum Concrete Thickness                                                                   | h <sub>min</sub>    | mm      |                  | + 30    |           | h <sub>ef</sub> + 2 | d <sub>0</sub> <sup>3</sup> where d | $_0$ is the hole | diameter    |          |  |
|                                                                                              |                     | (in.)   | (h <sub>ef</sub> | + 1.25) |           |                     |                                     |                  |             |          |  |
| Critical Edge Distance<br>(Uncracked Concrete Only)                                          | C <sub>ac</sub>     |         |                  |         | See Sec   | tion 4.1.10 i       | in ICC-ES E                         | SR-4535          |             |          |  |
| Strength Reduction Factor for Tension,<br>Concrete Failure Mode,<br>Condition B <sup>2</sup> | φ                   |         | 0.65             |         |           |                     |                                     |                  |             |          |  |
| Strength Reduction Factor for Shear,<br>Concrete Failure Mode,<br>Condition B <sup>2</sup>   | φ                   |         | 0.70             |         |           |                     |                                     |                  |             |          |  |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi <sup>1</sup> Additional setting information is decribed in Figure 6, installation instructions.

<sup>2</sup> Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of  $\phi$  applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318-11 D.4.4.



# **ANCHORING & DOWELING**

### **High Strength Hybrid Anchoring Adhesive**

## **Technical Data**



### TABLE 18: ULTRABOND HYB-2CC BOND STRENGTH design information for METRIC REBAR<sup>1,2</sup>

|                        |                                                                       | Decime Information                                    |                                                       | Cumple of              | Unite        |                 |                 | N               | letric R        | ebar Siz        | e               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
|------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------|--------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                        |                                                                       | Design Information                                    |                                                       | Symbol                 | Units        | Ø 10            | Ø 12            | Ø 14            | Ø 16            | Ø 20            | Ø 25            | Ø 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ø 32            |
|                        |                                                                       | Minimum Embedment D                                   | epth                                                  | h <sub>ef,min</sub>    | mm<br>(in.)  | 60<br>(2.4)     | 70<br>(2.8)     | 80<br>(3.0)     | 90<br>(3.1)     | 96<br>(3.5)     | 100<br>(3.9)    | 112<br>(4.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 128<br>(5.0)    |
|                        |                                                                       | Maximum Embedment D                                   | epth                                                  | h <sub>ef,max</sub>    | mm<br>(in.)  | 200<br>(7.9)    | 240<br>(9.4)    | 320<br>(11.0)   | 400<br>(12.6)   | 480<br>(15.7)   | 400<br>(19.7)   | 560<br>(22.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 640<br>(25.2)   |
| Ter<br>1               | /laximum Long<br>m Temperature<br><b>122 °F</b> (50 °C)               | Cracked Concrete<br>Characteristic Bond<br>Strength   | With Sustained Load or No sustained Load <sup>4</sup> | ${\cal T}_{k,cr}$      | MPa<br>(psi) | 7.5<br>(1,082)  | 7.3<br>(1,060)  | 7.9<br>(1,144)  | 8.2<br>(1,193)  | 8.2<br>(1,188)  | 8.0<br>(1,158)  | 7.9<br>(1,144)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.0<br>(1,163)  |
| Ter                    | faximum Short<br>m Temperature<br>I <b>76 °F</b> 80 °C) <sup>3</sup>  | Uncracked Concrete<br>Characteristic Bond<br>Strength | With Sustained Load or No sustained Load <sup>4</sup> | T <sub>k,uncr</sub>    | MPa<br>(psi) | 15.1<br>(2,183) | 14.6<br>(2,121) | 14.0<br>(2,025) | 14.0<br>(2,025) | 13.5<br>(1,954) | 13.0<br>(1,886) | 12.8<br>(1,852)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.5<br>(1,813) |
| Те                     | /laximum Long<br>rm Temperature<br>I <b>61 °F</b> (72 °C)             | Cracked Concrete<br>Characteristic Bond<br>Strength   | With Sustained Load or No sustained Load <sup>4</sup> | T <sub>k,cr</sub>      | MPa<br>(psi) | 6.5<br>(942)    | 6.4<br>(922)    | 6.9<br>(996)    | 7.2<br>(1,038)  | 7.1<br>(1,034)  | 6.9<br>(1,008)  | 6.9<br>(995)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.0<br>(1,012)  |
| Те                     | 1aximum Short<br>rm Temperature<br><b>48 °F</b> (120 °C) <sup>3</sup> | Uncracked Concrete<br>Characteristic Bond<br>Strength | With Sustained Load or No sustained Load <sup>4</sup> | T <sub>k,uncr</sub>    | MPa<br>(psi) | 13.1<br>(1,899) | 12.7<br>(1,845) | 12.1<br>(1,762) | 12.1<br>(1,762) | 11.7<br>(1,700) | 11.3<br>(1,640) | $\begin{array}{c} 9) & (4.4) \\ 00 & 560 \\ (22.0) \\ 0 & 7.9 \\ 58) & (1,144) \\ 00 & 12.8 \\ 00 & 12.8 \\ 008) & (1,852) \\ 008) & (995) \\ 008) & (995) \\ 008) & (995) \\ 008) & (1,611) \\ 0 & 4.9 \\ 008) & (717) \\ 0 & 4.9 \\ 008) & (717) \\ 0 & 4.9 \\ 008) & (717) \\ 0 & 4.9 \\ 008) & (1,611) \\ 0 & 4.9 \\ 008) & (1,611) \\ 0 & 4.9 \\ 008) & (1,611) \\ 0 & 4.9 \\ 008) & (1,611) \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & 108 \\ 0 & $ | 10.9<br>(1,577) |
|                        |                                                                       | Cracked Concrete<br>Characteristic Bond               | With Sustained Load <sup>4</sup>                      | ${\cal T}_{k,cr}$      | MPa<br>(psi) | 4.5<br>(678)    | 4.6<br>(665)    | 4.9<br>(718)    | 5.2<br>(748)    | 5.1<br>(745)    | 5.0<br>(726)    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.0<br>(729)    |
| Tei<br><b>2</b>        | /laximum Long<br>rm Temperature<br><b>12 °F</b> (100 °C)              | Strength                                              | No Sustained Load                                     | ₽ k,cr                 | MPa<br>(psi) | 5.5<br>(803)    | 5.7<br>(820)    | 6.0<br>(874)    | 6.4<br>(927)    | 6.3<br>(910)    | 6.2<br>(892)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.2<br>(892)    |
| Tei                    | 1aximum Short<br>rm Temperature<br><b>20 °F</b> (160 °C) <sup>3</sup> | Uncracked Concrete<br>Characteristic Bond             | With Sustained Load <sup>4</sup>                      | Τ                      | MPa<br>(psi) | 9.4<br>(1,369)  | 9.2<br>(1,329)  | 8.8<br>(1,270)  | 8.8<br>(1,270)  | 8.4<br>(1,225)  | 8.2<br>(1,182)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.8<br>(1,136)  |
|                        |                                                                       | Strength                                              | No Sustained Load                                     | Τ <sub>k,uncr</sub>    | MPa<br>(psi) | 11.6<br>(1,676) | 11.3<br>(1,641) | 10.8<br>(1,569) | 10.8<br>(1,569) | 10.3<br>(1,498) | 10.1<br>(1,462) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.6<br>(1,391)  |
|                        | Red                                                                   | luction Factor for Seismic                            | Tension <sup>5</sup>                                  | α <sub>N,seis</sub>    |              | 0.              | 95              |                 |                 | 1.              | 00              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| ы                      | Stron                                                                 | gth Reduction                                         | Dry Concrete                                          | $\phi_{d}$             |              |                 |                 | -               | 0.              | 65              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| Periodic<br>Inspection | Factors                                                               | for Permissible                                       | Water Saturated Concrete                              | $\phi_{ws}$            |              |                 |                 |                 | 0.              | 55              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| ч<br>Ins               | Installa                                                              | ation Conditions                                      | Water-Filled Holes<br>in Concrete                     | $oldsymbol{\phi}_{wf}$ |              |                 |                 |                 | 0.              | 45              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

<sup>1</sup>Characteristic bond strength values correspond to concrete compressive strength  $f'_c$  =2,500 psi (17.2 MPa). For concrete compressive strength  $f'_c$  between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of ( $f'_c$  /2,500)<sup>0.10</sup>. See Section 4.1.4 ICC-ESR 4535.

<sup>2</sup>Lightweight concrete may be used by applying a reduction factor as given in ACI 318-14 17.2.6 or ACI 318-11 Appendix D Section D.3.6 as applicable.

<sup>3</sup>Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a results of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

<sup>4</sup>Characteristic bond strength values are for sustained loads (when noted), including dead and live loads.

<sup>5</sup>For structures assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by αN,seis.



### **Technical Data**



# **TABLE 19:** ULTRABOND HYB-2CC Development Length for **FRACTIONAL REBAR** in holes drilled with a **HAMMER DRILL** and **CARBIDE BIT**<sup>1,2,4</sup>

| Design Information                                                                                 | Symbol         | Criteria Section of Reference                     | Units                                 |               |               |               | Reba          | r Size        |               |                |                |
|----------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------|---------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------|----------------|
| Design Information                                                                                 | Symbol         | Standard                                          | Units                                 | No. 3         | No. 4         | No. 5         | No. 6         | No. 7         | No. 8         | No. 9          | No.10          |
| Nominal reinforcing bar<br>diameter                                                                | d <sub>b</sub> | ASTM A615/A706                                    | in.<br>(mm)                           | 0.375<br>(10) | 0.500<br>(13) | 0.625<br>(16) | 0.750<br>(19) | 0.875<br>(22) | 1.000<br>(25) | 1.125<br>(29)  | 1.250<br>(32)  |
| Nominal bar area                                                                                   | A <sub>b</sub> | ASTM A615/A706                                    | in <sup>2</sup><br>(mm <sup>2</sup> ) | 0.11<br>(71)  | 0.20<br>(127) | 0.31<br>(198) | 0.44<br>(285) | 0.60<br>(388) | 0.79<br>(507) | 1.00<br>(645)  | 1.27<br>(817)  |
| Development length for $f_y = 60$ ksi and $f'_c = 2,500$ psi (normal weight concrete) <sup>3</sup> | l <sub>d</sub> | ACI 318-14<br>25.4.2.3 or<br>ACI 318-11<br>12.2.3 | in.<br>(mm)                           | 12.0<br>(305) | 14.4<br>(366) | 18.0<br>(457) | 21.6<br>(549) | 31.5<br>(800) | 36.0<br>(914) | 40.5<br>(1029) | 45.0<br>(1143) |
| Development length for $f_y = 60$ ksi and $f'_c = 4,000$ psi (normal weight concrete) <sup>3</sup> | l <sub>d</sub> | ACI 318-14<br>25.4.2.3 or<br>ACI 318-11<br>12.2.3 | in.<br>(mm)                           | 12.0<br>(305) | 12.0<br>(305) | 14.2<br>(361) | 17.1<br>(434) | 24.9<br>(633) | 28.5<br>(723) | 32.0<br>(813)  | 35.6<br>(904)  |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi <sup>1</sup>Development lengths valid for static, wind, and earthquake loads (SDC A and B).

<sup>2</sup>Development lengths in SDC C through F must comply with ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21 and Section 4.2.4 ICC-ESR 4535.

<sup>3</sup>fy and fc used in this table are for example purposes only. For sand-lightweight concrete, increase development length by 33%, unless the provisions of ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4 (d) are met to permit I > 0.75.

 $\binom{c_b + K_{tr}}{d_b} = 2.5 \quad , \ \psi t = 1.0, \ \psi e = 1.0, \ \psi s = 0.8 \text{ for } db \le \#6, \ 1.0 \text{ for } db > \#6$ 



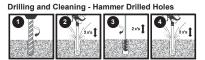
## **Technical Data**



# **TABLE 20:** ULTRABOND HYB-2CC Development Length for **METRIC REBAR** in holes drilled with a **HAMMER DRILL** and **CARBIDE BIT**<sup>1,2,4</sup>

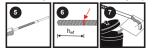
| Design Information                                                                                        | Symbol         | Criteria Section of Reference                     | Units                                  |                |                | F               | Rebar Siz       | e               |                 |                 |
|-----------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------|----------------------------------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Design Information                                                                                        | Symbol         | Standard                                          | Units                                  | Ø 8            | Ø 10           | Ø 12            | Ø 16            | Ø 20            | Ø 25            | Ø 32            |
| Nominal reinforcing bar diameter                                                                          | d <sub>b</sub> | BS 4449: 2005                                     | mm<br>(in.)                            | 8<br>(0.315)   | 10<br>(0.394)  | 12<br>(0.472)   | 16<br>(0.630)   | 20<br>(0.787)   | 25<br>(0.984)   | 32<br>(1.260)   |
| Nominal bar area                                                                                          | A <sub>b</sub> | BS 4449: 2005                                     | mm <sup>2</sup><br>(in. <sup>2</sup> ) | 50.3<br>(0.08) | 78.5<br>(0.12) | 113.1<br>(0.18) | 210.1<br>(0.31) | 314.2<br>(0.49) | 490.9<br>(0.76) | 804.2<br>(1.25) |
| Development length for $f_y = 72.5$<br>ksi and $f'_c = 2,500$ psi<br>(normalweight concrete) <sup>3</sup> | l <sub>d</sub> | ACI 318-14<br>25.4.2.3 or<br>ACI 318-11<br>12.2.3 | (mm)<br>(in.)                          | 305<br>(12.0)  | 348<br>(13.7)  | 417<br>(16.4)   | 556<br>(21.9)   | 871<br>(34.3)   | 1,087<br>(42.8) | 1,392<br>(54.8) |
| Development length for $f_y = 72.5$<br>ksi and $f'_c = 4,000$ psi<br>(normalweight concrete) <sup>3</sup> | l <sub>d</sub> | ACI 318-14<br>25.4.2.3 or                         |                                        | 305<br>(12.0)  | 305<br>(12.0)  | 330<br>(13.0)   | 439<br>(17.3)   | 688<br>(27.1)   | 859<br>(33.8)   | 1,100<br>(43.3) |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi <sup>1</sup>Development lengths valid for static, wind, and earthquake loads (SDC A and B).


<sup>2</sup>Development lengths in SDC C through F must comply with ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21 and Section 4.2.4 ICC-ESR 4525.

<sup>3</sup>fy and f'c used in this table are for example purposes only. For sand-lightweight concrete, increase development length by 33%, unless the provisions of ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4 (d) are met to permit I > 0.75.

$$\left(\frac{c_b + K_{tr}}{d_b}\right) = 2.5, \, \psi t = 1.0, \, \psi e = 1.0, \, \psi s = 0.8 \text{ for } db \le 20 \text{mm}, \, 1.0 \text{ for } db > 20 \text{mm}$$


## **ULTRABOND® HYB-2CC** Adhesive Anchor Installation Instructions

### Installation Instructions



- Using a rotary hammer drill and standard carbide bit, drill hole to specified 1 diameter and depth required by the anchor rod or rebar. In case of standing water
- in drilled hole, all water must be removed from hole prior to cleaning. Starting at the bottom of the anchor hole, blow out hole 2 cycles (2X) using oil free 2 compressed air (minimum pressure of 87 psi (6 bar). Select the correct wire brush for the hole diameter. Brush for 2 cycles (2X) in
- 3. up/down twisting motion.
- 4 Repeat step 2, then confirm that hole is clean and free of dust

#### **Dispensing Preparation - Cartridge Systems**



- 5 Check the expiration date on the cartridge to ensure it is not expired. Do not use expired product! Cartridge temperature must be between 41 °F - 104 °F (5 °C - 40 °C) when in use. Remove protective cap. Screw on proper, non-modified ATC mixing nozzle to cartridge. Ensure mixing element is inside the nozzle. Load cartridge into the correct dispensing tool.
- Prior to inserting the anchor rod or rebar into the filled drilled hole, mark the 6 embedment depth position on the anchor. Verify the anchor is straight and
- free of surface damage. Dispense and waste 3 full strokes material to ensure uniform gray color before injecting into hole. Review and note the published working and cure times prior to injection of the mixed adhesive into the clean anchor hole.

#### Installation and Curing



- Fill hole 2/3 full with mixed adhesive starting at the bottom and slowly withdraw as hole fills using an extension tube as needed. 8a
- 8b If extension tube (Part # T16EXTL) is required, first cut the tip of the mixer nozzle at position "X."
- Use piston plugs for overhead and vertically inclined installations, all installations 8c. with drill hole depth > 10" (250 mm), with anchor rod 5/8" to 1.1/4" (M16 to M30) diameter and rebar sizes #5 to #10 (Ø14 to Ø32). Insert piston plug to the back of the drilled hole and inject as described above



- Fully insert clean threaded rod or rebar with slow turning motion to the bottom of the hole. Observe gel (working) time
- Ensure the anchor is fully seated at the bottom of the hole and that some adhesive has flowed from the hole and all around the top of the anchor. If not, the installation must be repeated. For horizontal, inclined or overhead installations, use wedges to support the anchor while curing.
- Do not disturb, torque or apply load until full cure time has passed 10

### **Reference Commentary**

Drilling and Cleaning - Hammer Drilled Holes

Read and follow manufacturer's operations manual for the selected rotary drill. R1. Drill bit should conform to ANSI B212.15. Refer to the installation tables for ULTRABOND HYB-2CC applicable hole diameters and embedment depth ranges. CAUTION: Always wear appropriate personal protection

equipment (PPE) for eyes, ears and skin to help avoid inhalation of dust during the drilling and cleaning process. Refer to the Safety Data Sheet (SDS) for details prior to proceeding.

R2. BLOW (2X) - BRUSH (2X) - BLOW (2X). The compressed air wand should be inserted to the bottom of the hole, have a minimum pressure of 87 psi (6 bar) and be moved in an up/down motion to remove debris. R3. Refer to the installation tables for ULTRABOND HYB-2CC for wire brush selection. **CAUTION:** The brush should be

clean and contact the walls of the hole. If it does not, the brush is either too worn or small and should be replaced with a new brush of the correct diameter. A brush extension must be used for drill hole depth > 6 inches (150 mm). The wire brush diameter must be checked periodically during use.

R4. After final blow step is completed, visually inspect the hole to confirm it is clean and free of dust. debris. ice. grease oil or other foreign material. NOTE: If installation will be delayed for any reason, cover cleaned holes to prevent contamination.

#### **Dispensing Preparation - Cartridge Systems**

R5. Review Safety Data Sheet (SDS) before use. Review working and cure times. Consideration should be given to the reduced gel (working) time of the adhesive in warm temperatures. For permitted range of base material see the Cure Schedule. Always use a new mixing nozzle with new cartridges of adhesive and also for all work interruptions exceeding the published gel (working) time of the adhesive. Never re-use nozzles and do not attempt to force adhesive out of a hardened mixing nozzle. Shelf life of ULTRABOND HYB-2CC is 18 months when stored at temperatures between 41 °F (5 °C) and 77 °F (25 °C). **Optional**: Before attaching mixing nozzle, balance the cartridge by dispensing a small amount of material until both components are flowing evenly. For a cleaner environment, hand mix the two components and let cure prior to disposal in accordance with local regulations. R6. Refer to the installation tables for ULTRABOND HYB-2CC applicable embedment depth ranges

R7. Test bead of mixed adhesive must be uniform in color and free of streaks, as adhesive must be properly mixed in order to perform as published. Dispose of the test bead according to federal, state and local regulations. CAUTION: When changing cartridges, never re-use nozzles and do not attempt to force adhesive out of a hardened mixing nozzle. Leave the mixing nozzle attached to the cartridge upon completion of work.

#### Installation and Curing

NOTE: Building Code Requirements for Structural Concrete (ACI 318-14 and later) requires the Installer to be certified where adhesive anchors are to be installed in horizontal to vertically inclined (overhead) installations. The engineering drawings must be followed. For all applications not covered by this document, or for all installation questions, please contact Adhesives Technology Corp.

R8a. Be careful not to withdraw the mixing nozzle too quickly as this may trap air in the adhesive. Extension tubing (Part #'s T16EXT or T16EXTL) can be connected as needed onto the outside tip of the mixing nozzle. **NOTE:** When using a pneumatic dispensing tool, ensure that pressure is set at 90 psi (6.2 bar) maximum.

R8b. This step is not necessary if using extension tube (Part # T16EXT). R8c. Refer to the installation tables for ULTRABOND HYB-2CC for piston plug selection. During installation the piston plug will be naturally extruded from the drilled hole by the adhesive pressure. **CAUTION:** In addition to the installer being certified, do not install adhesive anchors overhead or vertically inclined without installation hardware supplied by ATC.

R9a. Prior to inserting the threaded rod or rebar into the hole, make sure it is straight, clean and free of oil/dirt and that the necessary embedment depth is marked on the anchor element. Insert the anchor elements into the hole while turning 1 - 2 rotations prior to the anchor reaching the bottom of the hole. Excess adhesive should be visible on all sides of the fully installed rod or rebar. Reinforcing bars must not be bent after installation except as set forth in ACI 318-14 Section 26.6.3.1 (b) or ACI 318-11 Section 7.3.2, as applicable, with the additional condition that the bars must be bent cold, and heating of reinforcing bars to facilitate field bending is not permitted. CAUTION: Use extra care with deep embedment or high temperature installations to ensure that he working time has not elapsed prior to the anchor being fully installed. Adjustments to the anchor alignment may only performed during the published working time for a given temperature R9b. For overhead, horizontal and inclined (between horizontal and overhead), wedges should be used to support the anchor while the adhesive is curing. Take appropriate steps to protect the exposed threads of the anchor element from uncured adhesive until after the full cure time has elapsed. R10. The amount of time needed to reach full cure is base material dependent. Refer to the chart for appropriate full cure

time for a given temperature. Refer to the installation tables for ULTRABOND HYB-2CC to ensure proper torque is used. Take care not to exceed the maximum torque for the selected anchor. After full cure time has passed, a fixture can be installed to the anchor and tightened up to the maximum torque

# ULTRABOND<sup>®</sup> HYB-2CC Adhesive Anchor Installation Instructions

|                   |                                                                                                                                                  |                |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fractional Thre                                        | aded Rod (inch)                                        | )                                                      |                                                         |                                                         |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Characteria       | tio                                                                                                                                              | Symbol         | Unito                                                                                                                                                                                                                                                                                                                                                | 3/8                                                                                                                                                                                                                                                                                       | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3/4                                                    | 7/8                                                    | 1                                                      | N/A                                                     | 1 1/4                                                   |
| Gliaracteris      | aic                                                                                                                                              | Symbol         | Units                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fractional                                             | Rebar Size                                             |                                                        |                                                         |                                                         |
|                   |                                                                                                                                                  |                |                                                                                                                                                                                                                                                                                                                                                      | #3                                                                                                                                                                                                                                                                                        | #4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | #6                                                     | #7                                                     | #8                                                     | #9                                                      | #10                                                     |
| Nominal Anch      | or Diameter                                                                                                                                      | d <sub>a</sub> | in.                                                                                                                                                                                                                                                                                                                                                  | 0.375                                                                                                                                                                                                                                                                                     | 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.750                                                  | 0.875                                                  | 1.000                                                  |                                                         | 1.250                                                   |
| Drill S           | Size                                                                                                                                             | d 。            | in.                                                                                                                                                                                                                                                                                                                                                  | 7/16                                                                                                                                                                                                                                                                                      | 9/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7/8                                                    | 1                                                      | 1 1/8                                                  |                                                         | 1 3/8                                                   |
| Brush F           | Part #                                                                                                                                           |                |                                                                                                                                                                                                                                                                                                                                                      | BP716                                                                                                                                                                                                                                                                                     | BP916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BP1116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BP78                                                   | BP100                                                  | BP118                                                  | I                                                       | BP138                                                   |
| Piston Plu        | g Part #                                                                                                                                         |                |                                                                                                                                                                                                                                                                                                                                                      | Not Re                                                                                                                                                                                                                                                                                    | equired                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PA1116-5PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PA78-5PK                                               | PA100-5PK                                              | PA118-5PK                                              | N/A                                                     | PA138-5PK                                               |
| Brush Di          | ameter                                                                                                                                           |                | in.                                                                                                                                                                                                                                                                                                                                                  | 0.528                                                                                                                                                                                                                                                                                     | 0.654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.976                                                  | 1.122                                                  | 1.252                                                  |                                                         | 1.504                                                   |
| Maximum           | A36/A307                                                                                                                                         | Τ              | Ft-lb                                                                                                                                                                                                                                                                                                                                                | 15 <sup>1</sup>                                                                                                                                                                                                                                                                           | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 66                                                     | 96                                                     | 147                                                    | I                                                       | 221                                                     |
| Tightening Torque | Carbon Steel                                                                                                                                     | inst,max       | (N-m)                                                                                                                                                                                                                                                                                                                                                | (20)                                                                                                                                                                                                                                                                                      | (41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (89)                                                   | (130)                                                  | (199)                                                  |                                                         | (300)                                                   |
| Nominal Anch      | or Diameter                                                                                                                                      | d <sub>a</sub> | in.                                                                                                                                                                                                                                                                                                                                                  | 0.375                                                                                                                                                                                                                                                                                     | 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.750                                                  | 0.875                                                  | 1.000                                                  | 1.125                                                   | 1.250                                                   |
| Drill S           | Size                                                                                                                                             | d 。            | in.                                                                                                                                                                                                                                                                                                                                                  | 1/2                                                                                                                                                                                                                                                                                       | 5/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7/8                                                    | 1                                                      | 1 1/8                                                  | 1 3/8                                                   | 1 1/2                                                   |
| Brush F           | Part #                                                                                                                                           |                |                                                                                                                                                                                                                                                                                                                                                      | BP12                                                                                                                                                                                                                                                                                      | BP58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BP34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BP78                                                   | BP100                                                  | BP118                                                  | BP138                                                   | BP112                                                   |
| Piston Plu        | g Part #                                                                                                                                         |                |                                                                                                                                                                                                                                                                                                                                                      | Not Re                                                                                                                                                                                                                                                                                    | equired                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PA34-5PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PA78-5PK                                               | PA100-5PK                                              | PA118-5PK                                              | PA138-5PK                                               | PA112-5PK                                               |
| Brush Di          | ameter                                                                                                                                           |                | in.                                                                                                                                                                                                                                                                                                                                                  | 0.528                                                                                                                                                                                                                                                                                     | 0.720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.976                                                  | 1.122                                                  | 1.252                                                  | 1.504                                                   | 1.630                                                   |
|                   | Nominal Anch<br>Drill S<br>Brush F<br>Piston Plu<br>Brush Di<br>Maximum<br>Tightening Torque<br>Nominal Anch<br>Drill S<br>Brush F<br>Piston Plu |                | Nominal Anchor Diameter     da       Drill Size     do       Brush Part #        Piston Plug Part #        Brush Diameter        Maximum     A36/A307       Tightening Torque     Carbon Steel       Nominal Anchor Diameter     da       Drill Size     do       Brush Part #        Drill Size     do       Brush Part #        Piston Plug Part # | Nominal Anchor Diameter $d_a$ in.       Drill Size $d_o$ in.       Brush Part #         Piston Plug Part #         Brush Diameter      in.       Maximum     A36/A307 $T_{inst.max}$ Ft-lb<br>(N-m)       Nominal Anchor Diameter $d_a$ in.       Drill Size $d_o$ in.       Brush Part # | Characteristic       Symbol       Units         #3       Mominal Anchr Diameter $d_a$ in.       0.375         Nominal Anchr Diameter $d_o$ in.       0.375         Drill Size $d_o$ in.       77         Brush Part #        BP716         Piston Plug Part #        Not Re         Maximum       A36/A307       Tinst.max       Ft-lb         Maximum       Carbon Steel $f_{inst.max}$ Ft-lb       15 <sup>1</sup> Nominal Anchor Diameter $d_a$ in.       0.372         Drill Size $d_a$ in.       172         Brush Part #        BP12         Piston Plug Part #        BP12 | $\begin{tabular}{ c c c c } \hline Characteristic & Symbol & Units & $$#3$ & $#4$ \\ \hline $$#3$ & $$#4$ \\ \hline $$#3$ & $$$#4$ \\ \hline $$#3$ & $$$#4$ \\ \hline $$#3$ & $$$0.500 \\ \hline $$Piston Plug Part # & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ |

#### INSTALLATION PARAMETERS FOR METRIC THREADED ROD AND REBAR

| Characteristic<br>Nominal Anchor Diameter<br>Drill Size<br>Brush Part #<br>Piston Plug Part #<br>Brush Diameter | Symbol                   | Units                 |                |            | Metric     | c Threade     | d Rod        |               |               |                |            |            | Metric R      | ebar Size     |                |               |               |               |
|-----------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|----------------|------------|------------|---------------|--------------|---------------|---------------|----------------|------------|------------|---------------|---------------|----------------|---------------|---------------|---------------|
| Gilaraci                                                                                                        | lensuc                   | Symbol                | Units          | M10        | M12        | M16           | M20          | M24           | M27           | M30            | 10         | 12         | 14            | 16            | 20             | 25            | 28            | 32            |
| Nominal Anch                                                                                                    | nor Diameter             | d <sub>a</sub>        | mm             | 10         | 12         | 16            | 20           | 24            | 27            | 30             | 10         | 12         | 14            | 16            | 20             | 25            | 28            | 32            |
| Drill                                                                                                           | Size                     | d <sub>o</sub>        | mm             | 12         | 14         | 18            | 22           | 28            | 30            | 35             | 14         | 16         | 18            | 20            | 25             | 32            | 35            | 40            |
| Brush                                                                                                           | Part #                   |                       |                | BP716      | BPM14      | BP1116        | BPM24        | BPM28         | BP118         | BPM35          | BPM14      | BPM16      | BP1116        | BPM20         | BPM25          | BPM32         | BPM35         | BPM40         |
| Piston Plu                                                                                                      | ıg Part #                |                       |                | Not Re     | equired    | PAM18-<br>5PK | PA78-<br>5PK | PA118-<br>5PK | PAM30-<br>5PK | PAM138-<br>5PK | Not Re     | equired    | PAM18-<br>5PK | PAM20-<br>5PK | PAM100-<br>5PK | PAM32-<br>5PK | PA138-<br>5PK | PAM40-<br>5PK |
| Brush D                                                                                                         | iameter                  |                       | mm             | 13.5       | 15.5       | 20            | 24           | 30            | 32            | 37             | 15.5       | 17.5       | 20            | 22            | 27             | 34            | 37            | 43.5          |
| Maximum<br>Tightening<br>Torque                                                                                 | A36/A307<br>Carbon Steel | T <sub>inst,max</sub> | N-m<br>(Ft-lb) | 20<br>(15) | 40<br>(30) | 80<br>(59)    | 120<br>(89)  | 170<br>(125)  | 250<br>(184)  | 300<br>(221)   | 20<br>(15) | 40<br>(30) | 45<br>(33)    | 80<br>(59)    | 120<br>(89)    | 175<br>(129)  | 250<br>(184)  | 300<br>(221)  |

#### CONCRETE BREAKOUT DESIGN INFORMATION FOR FRACTIONAL THREADED ROD AND REBAR

|                                                  |                     |       |                   |        | Fractic | onal Threaded | Rod Diamete                          | r (inch)        |        |        |
|--------------------------------------------------|---------------------|-------|-------------------|--------|---------|---------------|--------------------------------------|-----------------|--------|--------|
| Design Information                               | Symbol              | Units | 3/8               | 1/2    | 5/8     | 3/4           | 7/8                                  | 1               | N/A    | 1 1/4  |
| Design mornation                                 | Symbol              | Units |                   |        |         | Fractional    | Rebar Size                           |                 |        |        |
|                                                  |                     |       | #3                | #4     | #5      | #6            | #7                                   | #8              | #9     | #10    |
| Minimum Embedment Depth                          | h <sub>ef.min</sub> | in.   | 2 3/8             | 2 3/4  | 3 1/8   | 3 1/2         | 3 1/2                                | 4               | 4 1/2  | 5      |
| Minimum Embedment Depth                          | rr et,min           | (mm)  | (60)              | (70)   | (79)    | (89)          | (89)                                 | (102)           | (114)  | (127)  |
| Maximum Embedment Depth                          | h <sub>ef.max</sub> | in.   | 7 1/2             | 10     | 12 1/2  | 15            | 17 1/2                               | 20              | 22 1/2 | 25     |
| Maximum Embedment Depth                          | 11 ef,max           | (mm)  | (191)             | (254)  | (318)   | (381)         | (445)                                | (508)           | (572)  | (635)  |
| Maximum Embedment Depth (PIR)                    | h.                  | in.   | 22 1/2            | 30     | 37 1/2  | 45            | 52 1/2                               | 60              | 67 1/2 | 75     |
| Maximum Embedment Depth (Firty)                  | h <sub>ef,max</sub> | (mm)  | (572)             | (762)  | (953)   | (1143)        | (1334)                               | (1524)          | (1715) | (1905) |
| Minimum Spacing Distance                         | S <sub>min</sub>    | in.   | 1 7/8             | 2 1/2  | 3       | 3 5/8         | 4 1/4                                | 4 3/4           | 5 1/4  | 5 7/8  |
| Minimum Spacing Distance                         | S min               | (mm)  | (48)              | (64)   | (76)    | (92)          | (108)                                | (121)           | (133)  | (149)  |
| Minimum Edge Distance with 100% T <sub>max</sub> |                     | in.   | 1 5/8             | 1 3/4  | 2       | 2 3/8         | 2 1/2                                | 2 3/4           | 3      | 3 1/4  |
| Minimum Edge Distance with 100 % 1 max           | C <sub>min</sub>    | (mm)  | (41)              | (44)   | (51)    | (60)          | (64)                                 | (70)            | (76)   | (83)   |
| Minimum Edge, Distance with 45% T                |                     | in.   |                   |        |         | 1;            | 3/4                                  |                 | 2      | 3/4    |
| Minimum Edge Distance with 45% $T_{max}$         | C <sub>min</sub>    | (mm)  |                   |        |         | (4            | 4)                                   |                 | (7     | 70)    |
| Minimum Concrete Thickness                       | h                   | in.   | h <sub>ef</sub> + | - 1.25 |         | <i>b</i>      | 2dowhere do                          | is the hold dia | motor  |        |
| Minimum Concrete Thickness                       | h <sub>min</sub>    | (mm)  | (h <sub>ef</sub>  | + 30)  |         | II ef         | Zu <sub>0</sub> where u <sub>o</sub> |                 | lielei |        |

### For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 006894 MPa. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

#### CONCRETE BREAKOUT DESIGN INFORMATION FOR METRIC THREADED ROD AND REBAR

| Design Information                            | Symbol              | Units          | Metric Threaded Rod                                                                                      |              |                                                            |               |               | Metric Rebar Size               |               |               |               |               |               |                |                |                |                |
|-----------------------------------------------|---------------------|----------------|----------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------|---------------|---------------|---------------------------------|---------------|---------------|---------------|---------------|---------------|----------------|----------------|----------------|----------------|
| Design mormation                              |                     | Units          | M10                                                                                                      | M12          | M16                                                        | M20           | M24           | M27                             | M30           | 10            | 12            | 14            | 16            | 20             | 25             | 28             | 32             |
| Minimum Embedment Depth                       | h <sub>ef,min</sub> | mm<br>(in.)    | 60<br>(2.4)                                                                                              | 70<br>(2.8)  | 80<br>(3.1)                                                | 90<br>(3.5)   | 96<br>(3.8)   | 108<br>(4.3)                    | 120<br>(4.7)  | 60<br>(2.4)   | 70<br>(2.8)   | 75<br>(3.0)   | 80<br>(3.1)   | 90<br>(3.5)    | 100<br>(3.9)   | 112<br>(4.4)   | 128<br>(5.0)   |
| Maximum Embedment Depth                       | h <sub>ef,max</sub> | (in.)<br>(in.) | 200<br>(7.9)                                                                                             | 240<br>(9.4) | 320<br>(12.6)                                              | 400<br>(15.7) | 480<br>(18.9) | 540<br>(21.3)                   | 600<br>(23.6) | 200<br>(7.9)  | 240<br>(9.4)  | 280<br>(11.0) | 320<br>(12.6) | 400<br>(15.7)  | 500<br>(19.7)  | 560<br>(22.0)  | 640<br>(25.2)  |
| Maximum Embedment Depth (PIR)                 | h <sub>ef,max</sub> | mm<br>(in.)    |                                                                                                          |              |                                                            |               |               |                                 |               | 600<br>(23.6) | 720<br>(28.3) | 840<br>(33.1) | 960<br>(37.8) | 1200<br>(47.2) | 1500<br>(59.1) | 1680<br>(66.1) | 1920<br>(75.6) |
| Minimum Spacing Distance                      | S <sub>min</sub>    | mm<br>(in.)    | 50<br>(2.0)                                                                                              | 60<br>(2.4)  | 80<br>(3.1)                                                | 100<br>(3.9)  | 120<br>(4.7)  | 135<br>(5.3)                    | 150<br>(5.9)  | 50<br>(2.0)   | 60<br>(2.4)   | 70<br>(2.8)   | 80<br>(3.1)   | 100<br>(3.9)   | 125<br>(4.9)   | 140<br>(5.5)   | 160<br>(6.3)   |
| Minimum Edge Distance with 100% $\rm T_{max}$ | C <sub>min</sub>    | mm<br>(in.)    | 45<br>(1.8)                                                                                              | 45<br>(1.8)  | 55<br>(2.2)                                                | 60<br>(2.4)   | 70 (2.8)      | 75<br>(3.0)                     | 80<br>(3.1)   | 45<br>(1.8)   | 45<br>(1.8)   | 50<br>(2.0)   | 55<br>(2.2)   | 60<br>(2.4)    | 70 (2.8)       | 75<br>(3.0)    | 85<br>(3.3)    |
| Minimum Edge Distance with 45% $\rm T_{max}$  | C <sub>min</sub>    | mm<br>(in.)    | (1.8) (2.6                                                                                               |              | 70 (2.8)                                                   |               |               |                                 |               | 0<br>.8)      |               |               |               |                |                |                |                |
| Minimum Concrete Thickness                    | h <sub>min</sub>    | mm<br>(in.)    | $h_{ef}$ + 30<br>( $h_{ef}$ + 1.25) $h_{ef}$ + 2d <sub>0</sub> where d <sub>o</sub> is the hold diameter |              | $\frac{h_{ef} + 30}{(h_{ef} + 1.25)} \qquad h_{ef} + 2d_0$ |               | where $d_o$   | here $d_o$ is the hold diameter |               |               |               |               |               |                |                |                |                |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 006894 MPa. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

#### CURE SCHEDULE<sup>1</sup>

| Base Material Tempature |            | Working Time | Full Cure Time |  |  |
|-------------------------|------------|--------------|----------------|--|--|
| °F                      | (°C)       |              |                |  |  |
| 23 to 31                | (-5 to -1) | 50 min       | 5 hr           |  |  |
| 32 to 40                | (0 to 4)   | 25 min       | 3.5 hr         |  |  |
| 41 to 49                | (5 to 9)   | 15 min       | 2 hr           |  |  |
| 50 to 58                | (10 to 14) | 10 min       | 1 hr           |  |  |
| 59 to 67                | (15 to 19) | 6 min        | 40 min         |  |  |
| 68 to 85                | (20 to 29) | 3 min        | 30 min         |  |  |
| 86 to 104               | (30 to 40) | 2 min        | 30 min         |  |  |

Condition (warm) cartridge to 41 °F to 104 °F for installations from 23 °F to 40 °F.

ADHESIVE DISPENSING TOOLS AND MIXING NOZZLES

| Accessory                   | 9.5 fl. oz. (280 ml)<br>Cartridge | 13.9 fl. oz. (410 ml)<br>Cartridge | 27.9 fl. oz. (825 ml)<br>Cartridge |  |  |  |  |
|-----------------------------|-----------------------------------|------------------------------------|------------------------------------|--|--|--|--|
| Part #                      | A10-HYB2CC                        | A14-HYB2CC                         | A28-HYB2CC                         |  |  |  |  |
| Manual Dispensing Tool      | TM10-HYB                          | TM14-HYB                           | TM28HD                             |  |  |  |  |
| Pneumatic Dispensing Tool   |                                   |                                    | TA28-HYB                           |  |  |  |  |
| Recommended Mixing Nozzle   | T16-3PK                           |                                    |                                    |  |  |  |  |
| Brush Extension             | BP-EXT                            |                                    |                                    |  |  |  |  |
| Brush Extension with Handle | BP-EXTH                           |                                    |                                    |  |  |  |  |
| Nozzle Extension Tubing     | T16                               | BEXT                               | T16EXTL                            |  |  |  |  |
| Retention Wedge             | WEDGE                             |                                    |                                    |  |  |  |  |

| POST-INSTALLED REBAR hef ≥ 20d |                 |                |                 |                |  |  |  |  |
|--------------------------------|-----------------|----------------|-----------------|----------------|--|--|--|--|
| Cartridge Size<br>fl. oz.      | Injection Tools | d <sub>s</sub> | h <sub>ef</sub> | Extension Tube |  |  |  |  |
| 9.5                            | Manual Tool     | ≤ #5           | ≤ 27-1/2 (inch) | T16EXT         |  |  |  |  |
| 13.9                           | Manual 100      | ≤ 16 (mm)      | ≤ 700 (mm)      |                |  |  |  |  |
| 28                             |                 | ≤ #5           | ≤ 39-1/2 (inch) | TIDEXT         |  |  |  |  |
|                                |                 | ≤ 16 (mm)      | ≤ 1,000 (mm)    |                |  |  |  |  |
|                                | Pneumatic Tool  | ≤ #8           | ≤ 27-1/2 (inch) |                |  |  |  |  |
|                                |                 | ≤ 25 (mm)      | ≤ 700 (mm)      |                |  |  |  |  |
|                                |                 | ≤ #10          | ≤ 75 (inch)     | T16EXTL        |  |  |  |  |
|                                |                 | ≤ 32 (mm)      | ≤ 1,920 (mm)    | TIOEXIL        |  |  |  |  |



Rev 012723T2.1