

ICC-ES Evaluation Report

ESR-4535

Reissued March 2025 This report also contains:

- City of LA Supplement

Subject to renewal March 2026 - FL Supplement

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

Copyright © 2025 ICC Evaluation Service, LLC. All rights reserved.

DIVISION: 03 00 00— CONCRETE

Section: 03 16 00— Concrete Anchors

DIVISION: 05 00 00—

METALS

Section: 05 05 19— Post-Installed Concrete Anchors **REPORT HOLDER:**

ADHESIVES TECHNOLOGY CORPORATION (ATC) EVALUATION SUBJECT:

ADHESIVES
TECHNOLOGY
CORPORATION (ATC)
ULTRABOND® HYB2CC ADHESIVE
ANCHOR SYSTEM
AND POST-INSTALLED
REINFORCING BAR
SYSTEM IN CRACKED
AND UNCRACKED
CONCRETE

1.0 EVALUATION SCOPE

Compliance with the following codes:

- 2021, 2018, 2015, 2012 and 2009 <u>International Building Code® (IBC)</u>
- 2021, 2018, 2015, 2012 and 2009 <u>International Residential Code[®] (IRC)</u>

Property evaluated:

Structural

2.0 USES

The ULTRABOND HYB-2CC Adhesive Anchor System is used as anchorage and the Post-Installed Reinforcing Bar System is used as reinforcing bar connection (for development length and splice length) in cracked and uncracked normal weight concrete with a specified compressive strength, f_c , of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa) to resist static, wind or earthquake (IBC Seismic Design Categories A through F) tension and shear loads.

The anchor system complies with anchors as described in Section 1901.3 of the 2021, 2018 and 2015 IBC, Section 1909 of the 2012 IBC and is an alternative to cast-in-place and post-installed anchors described in Section 1908 of the 2012 IBC, and Sections 1911 and 1912 of the 2009 IBC. The anchor system may also be used where an engineered design is submitted in accordance with Section R301.1.3 of the IRC.

The post-installed reinforcing bar system is an alternative to cast-in-place reinforcing bar connection governed by ACI 318 and IBC Chapter 19.

3.0 DESCRIPTION

3.1 General:

The ULTRABOND HYB-2CC Adhesive Anchor System and Post-Installed Reinforcing Bar System is comprised of ULTRABOND HYB-2CC two-component adhesive filled in cartridges, static mixing nozzles, dispensing tools, hole cleaning equipment and adhesive injection accessories, and steel anchor elements, which are continuously threaded steel rods (to form the ULTRABOND HYB-2CC Adhesive Anchor System) or

deformed steel reinforcing bars (to form the ULTRABOND HYB-2CC Adhesive Anchor System or the Post-Installed Reinforcing Bar System).

The primary components of the ULTRABOND HYB-2CC Adhesive Anchor System and Post-Installed Reinforcing Bar System, including the ULTRABOND HYB-2CC adhesive cartridge, static mixing nozzle, and steel anchor elements, are shown in <u>Figures 2</u> and <u>3</u> of this report. The manufacturer's printed installation instructions (MPII), included with each adhesive unit package, are shown in <u>Figure 6</u> of this report.

3.2 Materials:

3.2.1 ULTRABOND HYB-2CC Adhesive: ULTRABOND HYB-2CC adhesive is an injectable two-component vinylester-urethane hybrid adhesive. The two components are kept separate by means of a labelled dual-cylinder cartridge. The two components combine and react when dispensed through a static mixing nozzle, supplied by Adhesives Technology Corporation, which is attached to the cartridge. ULTRABOND HYB-2CC is available in 9.5-ounce (280 mL), 14-ounce (420 mL) and 28-ounce (825 mL) cartridges.

Each cartridge label is marked with the adhesive expiration date. The shelf life, as indicated by the expiration date, applies to an unopened cartridge stored in a dry, dark and cool environment.

- **3.2.2 Hole Cleaning Equipment:** Hole cleaning equipment is comprised of steel wire brushes supplied by Adhesives Technology Corporation, and air blowers which are shown in Figure 6 of this report.
- **3.2.3 Dispensers:** ULTRABOND HYB-2CC adhesive must be dispensed with manual dispensers or pneumatic dispensers supplied by Adhesives Technology Corporation.

3.2.4 Steel Anchor Elements:

- **3.2.4.1 Threaded Steel Rods for use in Post-Installed Anchor Applications:** Threaded steel rods must be clean and continuously threaded (all-thread) in diameters described in <u>Tables 2</u>, <u>4</u> and <u>10</u>, and <u>Figure 6</u> of this report. Specifications for grades of threaded rod, including the mechanical properties, and corresponding nuts and washers, are included in <u>Table 2</u> of this report. Carbon steel threaded rods must be furnished with a minimum 0.0002-inch-thick (0.005 mm) zinc electroplated coating complying with ASTM B633, SC1 or a minimum 0.0021-inch-thick (0.053 mm) mechanically deposited zinc coating complying with ASTM B695, Class 55. The stainless steel threaded rods must comply with <u>Table 2</u> of this report. Steel grades and types of material (carbon, stainless) for the washers and nuts must match the threaded rods. Threaded steel rods must be clean, straight and free of indentations or other defects along their length. The embedded end may be flat cut or cut on the bias to a chisel point.
- **3.2.4.2 Steel Reinforcing Bars for use in Post-Installed Anchor Applications:** Steel reinforcing bars must be deformed reinforcing bars as described in <u>Table 3</u> of this report. <u>Tables 7</u>, <u>13</u> and <u>Figure 6</u> summarize reinforcing bar size ranges. The embedded portions of reinforcing bars must be clean, straight, and free of mill scale, rust, mud, oil and other coatings (other than zinc) that may impair the bond with the adhesive. Reinforcing bars must not be bent after installation except as set forth in ACI 318-19 Section 26.6.3.2 (b), ACI 318-14 Section 26.6.3.1 (b) or ACI 318-11 Section 7.3.2, as applicable, with the additional condition that the bars must be bent cold, and heating of reinforcing bars to facilitate field bending is not permitted.
- **3.2.4.3** Steel Reinforcing Bars for Use in Post-Installed Reinforcing Bar Connections: Steel reinforcing bars used in post-installed reinforcing bar connections must be deformed reinforcing bars (rebars) as depicted in <u>Figures 4</u> and <u>5</u>. <u>Tables 16</u> and <u>17</u>, and <u>Figure 6</u> summarize reinforcing bar size ranges. The embedded portions of reinforcing bars must be clean, straight, and free of mill scale, rust, mud, oil and other coatings that may impair the bond with the adhesive. Reinforcing bars must not be bent after installation, except as set forth in Section 26.6.3.2(b) of ACI 318-19, Section 26.6.3.1(b) of ACI 318-14 or Section 7.3.2 of ACI 318-11, as applicable, with the additional condition that the bars must be bent cold, and heating of reinforcing bars to facilitate field bending is not permitted.
- **3.2.4.4 Ductility:** In accordance with ACI 318-19 Section 2.3, ACI 318-14 Section 2.3 or ACI 318-11 Appendix D Section D.1, as applicable, in order for a steel anchor element to be considered ductile, the tested elongation must be at least 14 percent and reduction of area must be at least 30 percent. Steel elements with a tested elongation less than 14 percent or a reduction of area less than 30 percent, or both, are considered brittle. Specifications and physical properties of various steel materials are provided for threaded rods in Table 2 and for threaded rods in Table 3 of this report. Where values are nonconforming or unstated, the steel must be considered brittle.

3.3 Concrete:

Normal weight concrete must comply with Sections 1903 and 1905 of the IBC. The specified compressive strength of the concrete must be from 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa).

4.0 DESIGN AND INSTALLATION

4.1 Strength Design of Post-Installed Anchors:

4.1.1 General: The design strength of anchors under the 2021 IBC and 2021 IRC must comply with ACI 318-19 Section 17.5.1.2 and this report, except as required in ACI 318-19 Section 17.10. The design strength of anchors under the 2018 and 2015 IBC, as well as the 2018 and 2015 IRC, must be determined in accordance with ACI 318-14 and this report. The design strength of anchors under the 2012 and 2009 IBC, as well as the 2012 and 2009 IRC, must be determined in accordance with ACI 318-11 and this report.

Under the 2021 IBC and IRC, strength reduction factors, ϕ , as given in ACI 318-19 Section 17.5.3, must be used for load combinations calculated in accordance with 2021 IBC Section 1605.1 and ACI 318-19 Section 5.3.

Under the 2018 and 2015 IBC and IRC, the strength design of anchors must comply with ACI 318-14 17.3.1 or 318-11 D.4.1, as applicable, except as required in ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable.

Design parameters are provided in Tables 4 through Table 15 of this report.

Under the 2018 and 2015 IBC and IRC, strength reduction factors, ϕ , as given in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, must be used for load combinations calculated in accordance with Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable.

Under the 2012 and 2009 IBC and IRC, strength reduction factors, ϕ , as given in ACI 318-11 D.4.4 must be used for load combinations calculated in accordance with ACI 318-11 Appendix C.

- **4.1.2 Static Steel Strength in Tension:** The nominal static steel strength of a single anchor in tension, N_{sa} , in accordance with ACI 318-19 17.6.1.2, ACI 318-14 17.4.1.2 or ACI 318-11 D.5.1.2, as applicable, and the associated strength reduction factors, ϕ , in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are provided in <u>Tables 4</u>, <u>7</u>, <u>10</u> and <u>13</u> of this report for the corresponding anchor steel.
- **4.1.3 Static Concrete Breakout Strength in Tension:** The nominal static concrete breakout strength of a single anchor or group of anchors in tension, N_{cb} or N_{cbg} , must be calculated in accordance with ACI 318-19 17.6.2, ACI 318-14 17.4.2 or ACI 318-11 D.5.2, as applicable, with the following addition:

The basic concrete breakout strength of a single anchor in tension, N_b , must be calculated in accordance with ACI 318-19 17.6.2.2, ACI 318-14 17.4.2.2 or ACI 318-11 D.5.2.2, as applicable, using the values of $k_{c,cr}$ and $k_{c,uncr}$ as provided in Tables 5, 8, 11 and 14 of this report. Where analysis indicates no cracking in accordance with ACI 318-19 17.6.2.5, ACI 318-14 17.4.2.6 or ACI 318-11 D.5.2.6, as applicable, N_b must be calculated using $k_{c,uncr}$ and $\Psi_{c,N}$ = 1.0. For anchors in lightweight concrete see ACI 318-19 17.2.4, ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable. The value of f'_c used for calculation must be limited to 8,000 psi (55 MPa) in accordance with ACI 318-19 17.3.1, ACI 318-14 17.2.7 or ACI 318-11 D.3.7, as applicable. The value of f'_c used for calculation must be limited to 2,500 psi (17.2 MPa) maximum for metric reinforcing bars in cracked concrete. Additional information for the determination of nominal bond strength in tension is given in Section 4.1.4 of this report.

4.1.4 Static Bond Strength in Tension: The nominal static bond strength of a single adhesive anchor or group of adhesive anchors in tension, N_a or N_{ag} , must be calculated in accordance with ACI 318-19 17.6.5, ACI 318-14 17.4.5 or ACI 318-11 D.5.5, as applicable.

Bond strength values ($\tau_{k,cr}$, $\tau_{k,uncr}$) are a function of concrete compressive strength, concrete state (cracked, uncracked) and installation conditions (dry concrete, water-saturated concrete, water-filled holes). Special inspection level is qualified as periodic for all anchors except as shown in Section 4.3 of this report (the selection of continuous special inspection level does not provide an increase in anchor category or associated strength reduction factor for design). The following table summarizes the requirements:

CONCRETE	BOND STRENGTH	CONCRETE COMPRESSIVE STRENGTH	PERMISSIBLE INSTALLATION CONDITIONS	ASSOCIATED STRENGTH REDUCTION FACTOR
			Dry concrete	Фа
Cracked	$ au_{k,cr}$		Water-saturated concrete	φws
		f'c	Water-filled holes	фwf
ъ			Dry concrete	Фа
Uncracked	$ au_{k,uncr}$		Water-saturated concrete	φws
ı j			Water- filled holes	φw

Strength reduction factors for determination of the bond strength are given in <u>Tables 6</u>, <u>9</u>, <u>12</u> and <u>15</u> of this report. Adjustments to the bond strength may also be made for increased concrete compressive strength as noted in the footnotes to the corresponding tables and this section.

The bond strength values in <u>Tables 6</u>, <u>9</u>, <u>12</u> and <u>15</u> of this report correspond to concrete compressive strength f_c equal to 2,500 psi (17.2 MPa). For concrete compressive strength, f_c , between 2,500 psi and 8,000 psi (17.2 MPa and 55 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.10}$ [For **SI**: $(f_c/17.2)^{0.10}$]. The value of f_c' used for calculation must be limited to 2,500 psi (17.2 MPa) maximum for metric reinforcing bars in cracked concrete. Where applicable, the modified bond strength values must be used in lieu of $\tau_{k,cr}$ and $\tau_{k,uncr}$ in ACI 318-19 Equations (17.6.5.1.2b) and (17.6.5.2.1), ACI 318-14 Equations (17.4.5.1d) and (17.4.5.2) or ACI 318-11 Equations (D-21) and (D-22), as applicable.

The resulting nominal bond strength must be multiplied by the associated strength reduction factor ϕ_d , ϕ_{ws} or ϕ_{wf} , as applicable.

- **4.1.5 Static Steel Strength in Shear:** The nominal static steel strength of a single anchor in shear as governed by the steel, V_{sa} , in accordance with ACI 318-19 17.7.1.2, ACI 318-14 17.5.1.2 or ACI 318-11 D.6.1.2, as applicable, and the strength reduction factor, ϕ , in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are given in Tables 4, 7, 11 and 13 of this report for the corresponding anchor steel.
- **4.1.6 Static Concrete Breakout Strength in Shear:** The nominal static concrete breakout strength of a single anchor or group of anchors in shear, V_{cb} or V_{cbg} , must be calculated in accordance with ACI 318-19 17.7.2, ACI 318-14 17.5.2 or 318-11 D.6.2, as applicable, based on information given in <u>Tables 5</u>, <u>8</u>, <u>12</u> and <u>14</u> in this report.

The basic concrete breakout strength of a single anchor in shear, V_b , must be calculated in accordance with ACI 318-19 17.7.2.2, ACI 318-14 17.5.2.2 or ACI 318-11 D.6.2.2, as applicable, using the values of d given in Tables 5, 8, 12 and 14 of this report for the corresponding anchor steel in lieu of d_a . In addition, h_{ef} must be substituted for ℓ_e . In no case shall ℓ_e exceed 8d. The value of f'_c shall be limited to a maximum of 8,000 psi (55 MPa) in accordance with ACI 318-19 17.3.1, ACI 318-14 17.2.7 or ACI 318-11 D.3.7, as applicable.

- **4.1.7 Static Concrete Pryout Strength in Shear:** The nominal static pryout strength of a single anchor or group of anchors in shear, V_{cp} or V_{cpg} , shall be calculated in accordance with ACI 318-19 17.7.3, ACI 318-14 17.5.3 or ACI 318-11 D.6.3, as applicable.
- **4.1.8 Interaction of Tensile and Shear Forces:** For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-19 17.8, ACI 318-14 17.6 or ACI 318-11 D.7, as applicable.

4.1.9 Minimum Member Thickness h_{min} , **Anchor Spacing** s_{min} , **Edge Distance** c_{min} : In lieu of ACI 318-19 17.9.2, ACI 318-14 17.7.1 and 17.7.3 or ACI 318-11 D.8.1 and D.8.3, as applicable, values of s_{min} and c_{min} described in this report must be observed for anchor design and installation. The minimum member thicknesses, h_{min} , described in this report must be observed for anchor design and installation. For adhesive anchors that will remain untorqued, ACI 318-19 17.9.3, ACI 318-14 17.7.4 or ACI 318-11 D.8.4 applies, as applicable.

For anchors that will be torqued during installation, the maximum torque, T_{max} , must be reduced for edge distances less than the values given in <u>Tables 5</u>, <u>8</u>, <u>11</u> and <u>14</u> as applicable. T_{max} is subject to the edge distance, c_{min} , and anchor spacing, s_{min} , and shall comply with the following requirements:

INSTALLATION 1	INSTALLATION TORQUE SUBJECT TO EDGE DISTANCE											
NOMINAL ANCHOR SIZE, d	MINIMUM EDGE DISTANCE, Cmin	MINIMUM ANCHOR SPACING, Smin	MAXIMUM TORQUE, T _{max}									
⁵ / ₈ in. to 1 in. #5 to #8 M16 to M24 ø14 to ø25	1.75 in. (44.5 mm)		0.45.7									
1 ¹ / ₄ in. #9 to #10 M27 to M30 ø28 to ø32	2.75 in. (70 mm)	5d	0.45- <i>T_{max}</i>									

For values of T_{max} , see Figure 6 of this report.

4.1.10 Critical Edge Distance c_{ac} and $\psi_{cp,Na}$: The modification factor $\psi_{cp,Na}$, must be determined in accordance with ACI 318-19 17.6.5.5, ACI 318-14 17.4.5.5 or ACI 318-11 D.5.5.5, as applicable, except as noted below:

For all cases where c_{Na}/c_{ac} <1.0, $\psi_{cp,Na}$ determined from ACI 318-19 Eq. 17-6.5.5.1b, ACI 318-14 Eq. 17.4.5.5b or ACI 318-11 Eq. D-27, as applicable, need not be taken less than c_{Na}/c_{ac} . For all other cases, $\psi_{cp,Na}$ shall be taken as 1.0.

The critical edge distance, c_{ac} , must be calculated according to Eq. 17.6.5.5.1c for ACI 318-19, Eq. 17.4.5.5c for ACI 318-14 or Eq. D-27a for ACI 318-11, in lieu of ACI 318-19 17.9.5, ACI 318-14 17.7.6 or ACI 318-11 D.8.6, as applicable.

$$c_{ac} = h_{ef} \cdot \left(\frac{\tau_{k, uncr}}{1160}\right)^{0.4} \cdot \left[3.1 - 0.7 \frac{h}{h_{ef}}\right]$$

(Eq. 17.6.5.5.1c for ACI 318-19, Eq. 17.4.5.5c for ACI 318-14 or Eq. D-27a for ACI 318-11)

where

 $\left[\frac{h}{h_{\rm nc}}\right]$ need not be taken as larger than 2.4; and

 $\tau_{k,uncr}$ = the characteristic bond strength stated in the tables of this report whereby $\tau_{k,uncr}$ need not be taken as larger than:

$$au_{k,uncr} = rac{k_{uncr} \sqrt{h_{ef}f_c'}}{\pi \cdot d_a}$$
 Eq. (4-1)

4.1.11 Requirements for Seismic Design Categories C, D, E and F: In structures assigned to Seismic Design Category C, D, E or F under the IBC or IRC, anchors must be designed in accordance with ACI 318-19 17.10, ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable, except as described below.

The nominal steel shear strength, V_{sa} , must be adjusted by $\alpha_{V,seis}$ as given in <u>Tables 4</u>, <u>7</u>, <u>11</u> and <u>13</u> for the corresponding anchor steel. The nominal bond strength $\tau_{\kappa,cr}$ must be adjusted by $\alpha_{N,seis}$ as given in <u>Tables 6</u> and <u>12</u> for threaded rods, and <u>Tables 9</u> and <u>15</u> for reinforcing bars.

As an exception to ACI 318-11 Section D.3.3.4.2: Anchors designed to resist wall out-of-plane forces with design strengths equal to or greater than the force determined in accordance with ASCE 7 Equation 12.11-1 or 12.14-10 shall be deemed to satisfy ACI 318-11 Section D.3.3.4.3(d).

Under ACI 318-11 D.3.3.4.3(d), in lieu of requiring the anchor design tensile strength to satisfy the tensile strength requirements of ACI 318-11 D.4.1.1, the anchor design tensile strength shall be calculated from ACI 318-11 D.3.3.4.4.

The following exceptions apply to ACI 318-11 D.3.3.5.2:

- 1. For the calculation of the in-plane shear strength of anchor bolts attaching wood sill plates of bearing or non-bearing walls of light-frame wood structures to foundations or foundation stem walls, the in-plane shear strength in accordance with ACI 318-11 D.6.2 and D.6.3 need not be computed and ACI 318-11 D.3.3.5.3 need not apply provided all of the following are satisfied:
 - 1.1. The allowable in-plane shear strength of the anchor is determined in accordance with AF&PA NDS Table 11E for lateral design values parallel to grain.
 - 1.2. The maximum anchor nominal diameter is $\frac{5}{8}$ inch (16 mm).
 - 1.3. Anchor bolts are embedded into concrete a minimum of 7 inches (178 mm).
 - 1.4. Anchor bolts are located a minimum of 13/4 inches (45 mm) from the edge of the concrete parallel to the length of the wood sill plate.
 - 1.5. Anchor bolts are located a minimum of 15 anchor diameters from the edge of the concrete perpendicular to the length of the wood sill plate.
 - 1.6. The sill plate is 2-inch or 3-inch nominal thickness.
- 2. For the calculation of the in-plane shear strength of anchor bolts attaching cold-formed steel track of bearing or non-bearing walls of light-frame construction to foundations or foundation stem walls, the in-plane shear strength in accordance with ACI 318-11 D.6.2 and D.6.3 need not be computed and ACI 318-11 D.3.3.5.3 need not apply provided all of the following are satisfied:
 - 2.1. The maximum anchor nominal diameter is $\frac{5}{8}$ inch (16 mm).
 - 2.2. Anchors are embedded into concrete a minimum of 7 inches (178 mm).
 - 2.3. Anchors are located a minimum of 13/4 inches (45 mm) from the edge of the concrete parallel to the length of the track.
 - 2.4. Anchors are located a minimum of 15 anchor diameters from the edge of the concrete perpendicular to the length of the track.
 - 2.5. The track is 33 to 68 mil designation thickness.

Allowable in-plane shear strength of exempt anchors, parallel to the edge of concrete shall be permitted to be determined in accordance with AISI S100 Section E3.3.1.

3. In light-frame construction, bearing or nonbearing walls, shear strength of concrete anchors less than or equal to 1 inch [25 mm] in diameter attaching a sill plate or track to foundation or foundation stem wall need not satisfy ACI 318-11 D.3.3.5.3(a) through (c) when the design strength of the anchors is determined in accordance with ACI 318-11 D.6.2.1(c).

4.2 Strength Design of Post-Installed Reinforcing Bars:

4.2.1 General: The design of straight post-installed deformed reinforcing bars must be determined in accordance with ACI 318 rules for cast-in place reinforcing bar development and splices and this report.

Examples of typical applications for the use of post-installed reinforcing bars are illustrated in <u>Figure 5</u> of this report.

4.2.2 Determination of bar development length I_d : Values of I_d must be determined in accordance with the ACI 318 development and splice length requirements for straight cast-in place reinforcing bars.

Exceptions:

- 1. For uncoated and zinc-coated (galvanized) post-installed reinforcing bars, the factor Ψ_e shall be taken as 1.0. For all other cases, the requirements in ACI 318-19 25.4.2.5, ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4 (b) shall apply.
- 2. When using alternate methods to calculate the development length (e.g., anchor theory), the applicable factors for post-installed anchors generally apply.

4.2.3 Minimum Member Thickness, h_{min} , **Minimum Concrete Cover,** $c_{c,min}$, **Minimum Concrete Edge Distance,** $c_{b,min}$, **Minimum Spacing,** $s_{b,min}$: For post-installed reinforcing bars, there is no limit on the minimum member thickness. In general, all requirements on concrete cover and spacing applicable to straight cast-in bars designed in accordance with ACI 318 shall be maintained.

For post-installed reinforcing bars installed at embedment depths, h_{ef} , larger than 20d (h_{ef} > 20d), the minimum concrete cover shall be as follows:

REBAR SIZE	MINIMUM CONCRETE COVER, cc,min
$d_b \leq No. \ 6 \ (16mm)$	1 ³ / ₁₆ in. (30mm)
No. $6 < d_b \le No.10$ (16mm $< d_b \le 32mm$)	1 ⁹ / ₁₆ in. (40mm)

The following requirements apply for minimum concrete edge and spacing for $h_{ef} > 20d$:

Required minimum edge distance for post-installed reinforcing bars (measured from the center of the bar):

$$c_{b.min} = d_0/2 + c_{c.min}$$

Required minimum center-to-center spacing between post-installed bars:

$$S_{b,min} = d_0 + C_{c,min}$$

Required minimum center-to-center spacing from existing (parallel) reinforcing:

 $s_{b,min} = d_b/2$ (existing reinforcing) + $d_0/2$ + $c_{c,min}$

4.2.4 Design Strength in Seismic Design Categories C, D, E and F: In structures assigned to Seismic Category C, D, E or F under the IBC or IRC, design of straight post-installed reinforcing bars must take into account the provisions of ACI 318-19 Chapter 18, ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21, as applicable.

4.3 Installation:

Installation parameters are illustrated in <u>Figure 2</u> of this report. Installation must be in accordance with ACI 318-19 26.7.2, ACI 318-14 17.8.1 and 17.8.2 or ACI 318-11 D.9.1 and D.9.2. Anchor and post-installed reinforcing bar locations must comply with this report and the plans and specifications approved by the code official. Installation of the ULTRABOND HYB-2CC Adhesive Anchor and Post-Installed Reinforcing Bar Systems must conform to the manufacturer's printed installation instructions included in the adhesive packaging and provided in <u>Figure 6</u> of this report.

The adhesive anchor system may be used for upwardly inclined orientation applications (e.g., overhead). Upwardly inclined and horizontal orientation applications are to be installed using piston plugs for the $^{5}/_{8}$ -inchthrough $^{1}/_{4}$ -inch-diameter (M16 through M30) threaded steel rods and No. 5 through No. 10 (14 mm through 32 mm) steel reinforcing bars, installed in the specified hole diameter, and attached to the mixing nozzle and extension tube supplied by Adhesives Technology Corporation as described in Figure 6 in this report. Upwardly inclined and horizontal orientation installation for the $^{3}/_{8}$ -inch- and $^{1}/_{2}$ -inch-diameter (M10 and M12) threaded steel rods, and No. 3 and No. 4 (10 mm and 12 mm) steel reinforcing bars may be injected directly to the end of the hole using a mixing nozzle with a bore hole depth $d_{0} \le 10$ " (250 mm).

Installation of anchors in horizontal or upwardly inclined (overhead) orientations shall be fully restrained from movement throughout the specified curing period through the use of temporary wedges, external supports, or other methods. Where temporary restraint devices are used, their use shall not result in impairment of the anchor shear resistance.

4.4 Special Inspection:

Periodic special inspection must be performed where required in accordance with Section 1705.1.1 and Table 1705.3 of the 2021, 2018, 2015 and 2012 IBC, 1704.4 and 1704.15 of the 2009 IBC and this report. The special inspector must be on the jobsite initially during anchor or post-installed reinforcing bar installation to verify the anchor or post-installed reinforcing bar type and dimensions, adhesive expiration date, concrete type, concrete compressive strength, hole dimensions, hole cleaning procedures, spacing, edge distances, concrete thickness, anchor or post-installed reinforcing bar embedment, tightening torque, and adherence to the manufacturers printed installation instructions.

The special inspector must verify the initial installations of each type and size of adhesive anchor or postinstalled reinforcing bar by construction personnel on site. Subsequent installations of the same anchor or post-installed reinforcing bar type and size by the same construction personnel are permitted to be performed in the absence of the special inspector. Any change in the anchor or post-installed reinforcing bar product being installed or the personnel performing the installation requires an initial inspection. For ongoing installations over an extended period, the special inspector must make regular inspections to confirm correct handling and installation of the product.

Continuous special inspection of adhesive anchors or post-installed reinforcing bars installed in horizontal or upwardly inclined orientations to resist sustained tension loads must be performed in accordance with ACI 318-19 26.13.3.2 (e) and 26.7.1(j), ACI 318-14 17.8.2.4, 26.7.1(h) and 26.13.3.2 (c) or ACI 318-11 D.9.2.4, as applicable.

Under the IBC, additional requirements as set forth in Sections 1705, 1706 or 1707 must be observed, where applicable.

4.5 Compliance with NSF/ANSI Standard 61:

The ULTRABOND HYB-2CC Adhesive Anchor System complies with the requirements of NSF/ANSI Standard 61, as referenced in Section 605 of the 2021, 2018, 2015, 2012, and 2009 *International Plumbing Code*® (IPC) and is certified for use as an anchoring adhesive for installing threaded rods less than or equal to 1.3 inches (33 mm) in diameter in concrete for water treatment applications.

5.0 CONDITIONS OF USE:

The ULTRABOND HYB-2CC Adhesive Anchor System and Post-Installed Reinforcing Bar System described in this report comply with or are a suitable alternative to what is specified in, those codes listed in Section 1.0 of this report, subject to the following conditions:

- **5.1** ULTRABOND HYB-2CC adhesive anchors and post-installed reinforcing bars must be installed in accordance with the manufacturer's printed installation instructions included in the packaging for each cartridge and provided in Figure 6 of this report.
- 5.2 The anchors and post-installed reinforcing bars described in this report must be installed in cracked and uncracked normalweight concrete having a specified compressive strength f'c = 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa).
- **5.3** The concrete shall have attained its minimum specified compressive strength, f'c, prior to installation of the anchors and post installed reinforcing bars.
- 5.4 The values of f'c used for calculation purposes must not exceed 8,000 psi (55 MPa). The value of f'c used for calculation of tension resistance must be limited to 2,500 psi (17.2 MPa) maximum for metric reinforcing bars used as anchorage in cracked concrete only.
- **5.5** Anchors and post-installed reinforcing bars must be installed in concrete base materials in holes predrilled in accordance with the instructions provided in Figure 6 of this report.
- 5.6 Loads applied to the anchors and post-installed reinforcing bars must be adjusted in accordance with Section 1605.1 of the 2021 IBC or Section 1605.2 of the IBC for strength design.
- 5.7 In structures assigned to Seismic Design Categories C, D, E, and F under the IBC or IRC, anchor strength must be adjusted in accordance with Section 4.1.11 of this report, and post-installed reinforcing bars must comply with Section 4.2.4 of this report.
- 5.8 ULTRABOND HYB-2CC adhesive anchors and post-installed reinforcing bars are permitted to be installed in concrete that is cracked or that may be expected to crack during the service life of the anchors and postinstalled reinforcing bars, subject to the conditions of this report.
- 5.9 Strength design values of the post-installed anchors are established in accordance with Section 4.1 of this report.
- **5.10** Post-installed reinforcing bar development and splice lengths are established in accordance with Section 4.2 of this report.
- **5.11** Minimum anchor spacing and edge distance as well as minimum member thickness must comply with the values described in this report.
- 5.12 Post-installed reinforcing bar spacing, minimum member thickness, and cover distance must be in accordance with the provisions of ACI 318 for cast-in-place bars and Section 4.2.3 of this report.

- 5.13 Prior to installation of anchors and post-installed reinforcing bars, calculations and details demonstrating compliance with this report must be submitted to the code official. The calculations and details must be prepared by a registered design professional where required by the statutes of the jurisdiction in which the project is to be constructed.
- 5.14 Anchors and post-installed reinforcing bars are not permitted to support fire-resistive construction. Where not otherwise prohibited by the code, the anchors and post-installed reinforcing bars are permitted for installation in fire-resistive construction provided that at least one of the following conditions is fulfilled:
 - Anchors and post-installed reinforcing bars are used to resist wind or seismic forces only.
 - Anchors and post-installed reinforcing bars that support gravity load-bearing structural elements are
 within a fire-resistive envelope or a fire-resistive membrane, are protected by approved fire-resistive
 materials, or have been evaluated for resistance to fire exposure in accordance with recognized
 standards.
 - Anchors and post-installed reinforcing bars are used to support non-structural elements.
- 5.15 Since an ICC-ES acceptance criteria for evaluating data to determine the performance of adhesive anchors and post-installed reinforcing bars subjected to fatigue or shock loading is unavailable at this time, the use of these anchors under such conditions is beyond the scope of this report.
- **5.16** Use of zinc-plated carbon steel threaded rods or steel reinforcing bars is limited to dry, interior locations.
- **5.17** Use of hot-dipped galvanized carbon steel and stainless steel rod is permitted for exterior exposure or damp environments.
- 5.18 Steel anchoring elements in contact with preservative-treated and fire-retardant-treated wood shall be of zinc-coated steel or stainless steel. The minimum coating weights for zinc-coated steel shall be in accordance with ASTM A153.
- 5.19 Periodic special inspection must be provided in accordance with Section 4.4 in this report. Continuous special inspection for anchors and post-installed reinforcing bars installed in horizontal or upwardly inclined orientations to resist sustained tension loads must be provided in accordance with Section 4.4 of this report.
- 5.20 Installation of anchors and post-installed reinforcing bars in horizontal or upwardly inclined orientations to resist sustained tension loads must be performed by personnel certified by an applicable certification program in accordance with ACI 318-19 26.7.2(e), ACI 318-14 17.8.2.2 or 17.8.2.3 or ACI 318-11 D.9.2.2 or D.9.2.3, as applicable.
- **5.21** ULTRABOND HYB-2CC adhesive anchors and post-installed reinforcing bars may be used to resist tension and shear forces in floor, wall for overhead installations when installed into concrete and fully cured with a temperature between 23°F and 104°F (-5°C and 40°C) for threaded rods and rebar.
- **5.22** Anchors and post-installed reinforcing bars shall not be used for installations where the concrete temperature can vary from 40°F (5°C) or less to 80°F (27°C) or higher within a 12-hour period. Such applications may include but are not limited to anchorage of building facade systems and other applications subject to direct sun exposure.
- **5.23** ULTRABOND HYB-2CC adhesive is manufactured under a quality-control program with inspections by ICC-ES.

6.0 EVIDENCE SUBMITTED

Data in accordance with the ICC-ES Acceptance Criteria for Post-Installed Adhesive Anchors in Concrete (AC308), dated June 2019, editorially revised February 2021, which incorporates requirements in ACI 355.4-11 for use in cracked and uncracked concrete; including, but not limited to, tests under freeze/thaw conditions, tests under sustained load, tests for installation including installation direction and condition, tests at elevated temperatures, tests for resistance of alkalinity, tests for resistance to sulphur and tests for seismic tension and shear.

7.0 IDENTIFICATION

7.1 ULTRABOND HYB-2CC adhesive is identified by packaging labeled with the company's name (Adhesives Technology Corporation) and address, anchor name, the lot number, the expiration date, and the evaluation report number (ESR-4535). Threaded rods, nuts, washers, and deformed reinforcing bars must be standard steel anchor elements and must conform to applicable national or international specifications as set forth in <u>Tables 2</u> and <u>3</u> of this report.

7.2 The report holder's contact information is the following:

ADHESIVES TECHNOLOGY CORPORATION (ATC) 450 EAST COPANS ROAD POMPANO BEACH, FLORIDA 33064 (954) 461-2300 www.atcepoxy.com

TABLE 1—DESIGN STRENGTH - TABLE REFERENCE INDEX

DESIGN STRENGTH¹ - TREADED RODS	Fractional	Metric
Steel Strength - N _{sa} , V _{sa}	Table 4	Table 10
Concrete Strength - N_{pn} , N_{sb} , N_{sbg} , N_{cb} , N_{cbg} , V_{cb} , V_{cbg} , V_{cp} , V_{cpg}	Table 5	Table 11
Bond Strength ² - N _a , N _{ag}	Table 6	Table 12
DESIGN STRENGTH1 – REINFORCING STEEL	Fractional	Metric
Steel Strength - N _{sa} , V _{sa}	Table 7	Table 13
Concrete Strength - Npn, Nsb, Nsbg, Ncb, Ncbg, Vcb, Vcbg, Vcp, Vcpg	Table 8	Table 14
Bond Strength ² - N _a , N _{ag}	Table 9	Table 15
Determination of development length for post-installed reinforcing bar connections	Table 16	Table 17

¹Ref. ACI 318-19 17.5.2, ACI 318-14 17.3.1.1 or 318-11 D.4.1.1, as applicable.

²See Section 4.1.4 of this evaluation report.

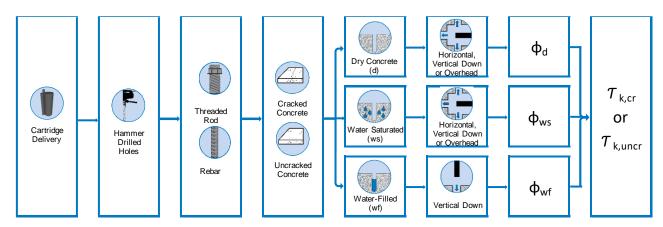


FIGURE 1—ULTRABOND HYB-2CC FLOW CHART FOR THE ESTABLISHMENT OF DESIGN STRENGTH

TABLE 2—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON CARBON AND STAINLESS STEEL THREADED ROD MATERIALS1

	THREADED ROD SPECIFICATION		MINIMUM SPECIFIED ULTIMATE STRENGTH, f _{uta}	MINIMUM SPECIFIED YIELD STRENGTH 0.2 PERCENT OFFSET, fya	f _{uta} /f _{ya}	ELONGATION, MIN. PERCENT ¹¹	REDUCTION OF AREA, MIN. PERCENT	SPECIFICATION FOR NUTS ¹²	
	ASTM A193 ² Grade B7	psi (MPa)	125,000 (860)	105,000 (720)	1.19	16	50	ASTM A194 / A563 Grade DH	
	ASTM A36 ³ / F1554 ⁴ , Grade 36	psi (MPa)	58,000 (400)	36,000 (250)	1.61	23	40	ASTM A194 / A563	
	ASTM F1554 ⁴ Grade 55	psi (MPa)	75,000 (515)	55,000 (380)	1.36	23	40	Grade A	
TEEL	ASTM F1554 ⁴ Grade 105		125,000 (860)	105,000 (725)	1.19	15 45			
SNO	ASTM A449 ⁵ (3/8" to1" dia.)	psi (MPa)	120,000 (830)	92,000 (635)	1.30	14	35	ASTM A194 / A563 Grade DH	
CARBON	ASTM A449 ⁵ (1-1/4" dia.)	psi (MPa)	105,000 (720)	81,000 (560)	1.30	14	35		
	ASTM F568M ⁶ Class 5.8 (equivalent to ISO 898-1)	psi (MPa)	72,500 (500)	58,000 (400)	1.25	10	35	A563 Grade DH DIN 934 (8-A2K) ¹³	
	ISO 898-17 Class 5.8	MPa (psi)	500 (72,500)	400 (58,000)	1.25	22		EN ISO 4032 Grade 6	
	ISO 898-17 Class 8.8	MPa (psi)	800 (118,000)	640 (92,800)	1.25	12	52	EN ISO 4032 Grade 8	
	ASTM F593 ⁸ CW1 ³ / ₈ to ⁵ / ₈ in.	psi (MPa)	100,000 (690)	65,000 (450)	1.54	20		ASTM F594 Alloy	
STEEL	ASTM F593 ⁸ CW2 ³ / ₄ to 1 ¹ / ₄ in.	psi (MPa)	85,000 (590)	45,000 (310)	1.89	25		Group 1, 2 or 3	
	ASTM A193/A193M ⁹ Grade B8/B8M2, Class 2B	psi (MPa)	95,000 (655)	75,000 (515)	1.27	25	40	ASTM A194/A194M	
STAINLESS	ISO 3506-1 ¹⁰ A4-70 M10-M24	MPa (psi)	700 (101,500)	450 (65,250)	1.56	40		EN ISO 4032	
(J)	ISO 3506-1 ¹⁰ A4-50 M27-M30	MPa (psi)	500 (72,500)	210 (30,450)	2.38	40		EN ISO 4032	

¹Adhesive must be used with continuously threaded carbon or stainless steel rod (all-thread) having thread characteristics complying with ANSI B1.1 UNC Coarse Thread Series.

TABLE 3—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON STEEL REINFORCING BARS

REINFORCING SPECIFICATION	UNITS	MINIMUM SPECIFIED ULTIMATE STRENGTH, futa	MINIMUM SPECIFIED YIELD STRENGTH, f_{ya}
ASTM A615¹, A767³, A996⁴	psi	90,000	60,000
Grade 60	(MPa)	(620)	(414)
ASTM A706², A767³	psi	80,000	60,000
Grade 60	(MPa)	(550)	(414)
ASTM A615 ¹ , Grade 40	psi	60,000	40,000
	(MPa)	(415)	(275)
DIN 488 ⁵ BSt 500	MPa	550	500
	(psi)	(79,750)	(72,500)

¹Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement.

²Standard Specification for Alloy-Steel and Stainless steel Bolting Materials for High temperature of High Pressure service and Other Special Purpose Applications.

³Standard Specification for Carbon Structural steel.

⁴Standard Specification for Anchor Bolts, Steel 36, 55 and 105-ksi Yield Strength.

⁵Standard Specification for Hex Cap Screws, Bolts and Studs, Heat Treated, 120/105/50 ksi Minimum Tensile Strength, General Use.

⁶Standard Specification for Carbon and Alloy Steel external Threaded Metric Fasteners.

⁷Mechanical properties of fasteners made of carbon steel and alloy steel - Part 1: Bolts, Screws and Studs.

⁸Standard Specification for Stainless Steel Bolts, Hex Cap Screws, and Studs.

⁹Standard Specification for Alloy-Steel and Stainless Steel Bolting for High Temperature or High Pressure Service and Other Special Purpose Applications.

¹⁰Mechanical properties of corrosion-resistant stainless steel fasteners - Part 1: Bolts, Screws and Studs. ¹Based on 2-in. (50 mm) gauge length except for ASTM A193, which is based on a gauge length of 4d.

¹²Nuts and washers of other grades and style having specified proof load stress greater than the specified grade and style are also suitable. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod.

¹³Nuts for metric rods.

²Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement.

³Standard specification for Zinc-Coated (Galvanized) steel Bars for Concrete Reinforcement.

⁴Standard specification for Rail-Steel and Axle-steel Deformed bars for Concrete Reinforcement.

⁵Reinforcing steel, reinforcing steel bars; dimensions and masses.

TABLE 4—STEEL DESIGN INFORMATION FOR FRACTIONAL THREADED ROD1

					FRACTIO	NAL THRE	ADED ROD	DIAMETER	(INCH)	
	DESIGN INFORMATION	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	11/4
	Nominal Anchor Diameter	d	in. (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.250 (31.8)
ТІ	hreaded Rod Cross-sectional area	Ase	in.² (mm²)	0.0775 (50)	0.1419 (92)	0.2260 (146)	0.3345 (216)	0.4617 (298)	0.6057 (391)	0.9691 (625)
4,	Nominal strength as governed by steel	N _{sa}	lb (kN)	4,495 (20.0)	8,230 (36.6)	13,110 (58.3)	19,400 (86.3)	26,780 (119.1)	35,130 (156.3)	56,210 (250.0)
ASTM A36/F1554, Grade 36	strength	V _{sa}	lb (kN)	2,695 (12.0)	4,940 (22.0)	7,860 (35.0)	11,640 (51.8)	16,070 (71.4)	21,080 (93.8)	33,725 (150.0)
l A3(Reduction factor for seismic shear	α <i>v,seis</i>		(-/	(-/	(===)	0.60	, ,	()	()
D G	Strength reduction factor for tension ²	φ					0.75			
AS	Strength reduction factor for shear ²	φ					0.65			
	Nominal strength as governed by steel	N _{sa}	lb (kN)	5,815 (25.9)	10,645 (47.6)	16,950 (75.5)	25,090 (111.7)	34,630 (154.1)	45,430 (202.1)	72,685 (323.1)
ASTM F1554 Grade 55	strength	V _{sa}	lb (kN)	3,490 (15.5)	6,385 (28.6)	10,170 (45.3)	15,055 (67)	20,780 (92.5)	27,260 (121.3)	43,610 (193.9)
TM	Reduction factor for seismic shear	α _{V,seis}					0.60			
AS	Strength reduction factor for tension ²	φ					0.75			
	Strength reduction factor for shear ²	φ					0.65			
. 4	Nominal strength as governed by steel	N _{sa}	lb (kN)	9,685 (43.1)	17,735 (78.9)	28,250 (125.7)	41,810 (186.0)	57,710 (256.7)	75,710 (336.8)	121,135 (538.8)
ASTM A193 Grade B7 ASTM F1554 Grade 105	strength	V _{sa}	lb (kN)	5,810 (25.9)	10,640 (47.3)	16,950 (75.4)	25,085 (111.6)	34,625 (154.0)	45,425 (202.1)	72,680 (323.3)
STN 3rac STM STM	Reduction factor for seismic shear	α <i>v,seis</i>					0.60			
\$ 0 8 0	Strength reduction factor for tension ²	ϕ					0.75			
	Strength reduction factor for shear ²	ϕ					0.65			
	Nominal strength as governed by steel	N _{sa}	lb (kN)	9,300 (41.4)	17,030 (76.2)	27,120 (120.9)	40,140 (178.8)	55,405 (246.7)	72,685 (323.7)	101,755 (450.0)
ASTM A449	strength	V _{sa}	lb (kN)	5,580 (24.8)	10,220 (45.7)	16,270 (72.5)	24,085 (107.3)	33,240 (148)	43,610 (194.2)	61,055 (270.0)
STN	Reduction factor for seismic shear	α <i>v,seis</i>					0.60			
Ä	Strength reduction factor for tension ²	ϕ					0.75			
	Strength reduction factor for shear ²	ϕ					0.65			
>	Nominal strength as governed by steel	N _{sa}	lb (kN)	5,620 (25)	10,290 (46)	16,385 (73)	24,250 (108)	33,470 (149)	43,910 (195.5)	70,260 (312.5)
ASTM F568M Class 5.8	strength	V _{sa}	lb (kN)	3,370 (15)	6,175 (27.6)	9,830 (43.8)	14,550 (64.8)	20,085 (89.4)	26,350 (117.3)	42,155 (187.5)
STM	Reduction factor for seismic shear	α <i>v,seis</i>					0.60			
AS	Strength reduction factor for tension ²	φ					0.65			
	Strength reduction factor for shear ²	φ					0.60			
%	Nominal strength as governed by steel	N _{sa}	lb (kN)	7,750 (34.5)	14,190 (63.1)	22,600 (100.5)	28,430 (126.5)	39,245 (174.6)	51,485 (229.0)	82,370 (366.4)
ASTM F593 CW Stainless	strength	V _{sa}	lb (kN)	4,650 (20.7)	8,515 (37.9)	13,560 (60.3)	17,060 (75.9)	23,545 (104.7)	30,890 (137.4)	49,425 (219.8)
'M F	Reduction factor for seismic shear	α _{V,seis}					0.60			
AST	Strength reduction factor for tension ²	φ					0.65			
	Strength reduction factor for shear ²	φ					0.60			
93M Class	Nominal strength as governed by steel	N _{sa}	lb (kN)	7,365 (32.8)	13,480 (60.3)	21,470 (95.6)	31,780 (141.5)	43,860 (195.2)	57,540 (256.1)	92,065 (409.4)
ASTM A193/A193M Grade B8/B8M2, Class 2B	strength	V _{sa}	lb (kN)	4,420 (19.7)	8,090 (36.2)	12,880 (57.4)	19,070 (84.9)	26,320 (117.1)	34,525 (153.7)	55,240 (245.6)
1 A1 B8/E	Reduction factor for seismic shear	α <i>v,seis</i>					0.60			
STN ade i	Strength reduction factor for tension ²	φ					0.75			
Gr.	Strength reduction factor for shear ²	ϕ					0.65			

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

 1 Values provided for common rod material types based on specified strengths and calculated in accordance with ACI 318-19 Eq. 17.6.1.2 and 17.7.1.2b, ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2 b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable. Nuts and washers must comply with requirements for the rod. 2 The tabulated value of ϕ applies when the load combinations of Section 1605.1 of the 2021 IBC, Section 1605.2 of the 2018, 2015 and 2012 IBC, ACI 318-19 5.3, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4.

TABLE 5—CONCRETE BREAKOUT DESIGN INFORMATION FOR FRACTIONAL THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT¹

DESIGN INFORMATION	Cumbal	Units		FRA	CTIONAL THE	READED ROD	DIAMETER (INCH)		
DESIGN INFORMATION	Symbol	Ullits	3/8	1/2	5/8	3/4	7/8	1	11/4	
Minimum Embedment Depth	h _{ef,min}	in. (mm)	2 ³ / ₈ (60)	2 ³ / ₄ (70)	3 ¹ / ₈ (79)	3 ¹ / ₂ (89)	3 ¹ / ₂ (89)	4 (102)	5 (127)	
Maximum Embedment Depth	h _{ef,max}	in. (mm)	7 ¹ / ₂ (191)	10 (254)	12 ¹ / ₂ (318)	15 (381)	17 ¹ / ₂ (445)	20 (508)	25 (635)	
Effectiveness Factor For Cracked Concrete	K _{c,cr}	in-lb (SI)		17 (7)						
Effectiveness Factor For Uncracked Concrete	K _{c,uncr}	in-lb (SI)				24 (10)				
Minimum Spacing Distance	Smin	in. (mm)	1 ⁷ / ₈ (48)	2 ¹ / ₂ (64)	3 (76)	3 ³ / ₄ (95)	4 ¹ / ₄ (108)	4 ³ / ₄ (121)	5 ⁷ / ₈ (149)	
Minimum edge distance	Cmin	in. (mm)	1 ⁵ / ₈ (41)	1 ³ / ₄ (44)	2 (51)	2 ³ / ₈ (60)	2 ¹ / ₂ (64)	2 ³ / ₄ (70)	3 ¹ / ₄ (83)	
		(11111)		(1.)	For smaller edge distances see Section 4.1.9 of this report.					
Minimum. Concrete Thickness	h _{min}	in. (mm)		+ 1 ¹ / ₄ + 30)		$h_{\rm ef}$ + 2 d_0 wh	here d_0 is the h	ole diameter		
Critical Edge Distance (For Uncracked Concrete Only)	Cac				See Sec	tion 4.1.10 of t	his report.			
Strength Reduction Factor For Tension, Concrete Failure Mode, Condition B ²	φ					0.65				
Strength Reduction Factor For Shear, Concrete Failure Mode, Condition B ²	φ					0.70				

¹Additional setting information is described in <u>Figure 6</u>, installation instructions.

²Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of ϕ applies when the load combinations of Section 1605.1 of the 2021 IBC, Section 1605.2 of the 2018, 2015 and 2012 IBC, ACI 318-19 5.3, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4.

TABLE 6—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT1,2

		DEGIGN INFORM	4.T.O.V		11.24		FRACTION	AL THRE	ADED RO	D DIAME	TER (INCH)	
		DESIGN INFORM	ATION	Symbol	Units	3/8	1/2	5/8	3/4	⁷ / ₈	1	11/4
	N	linimum Embedme	nt Depth	h _{ef,min}	in. (mm)	2 ³ / ₈ (60)	2 ³ / ₄ (70)	3 ¹ / ₈ (79)	3 ¹ / ₂ (89)	3 ¹ / ₂ (89)	4 (102)	5 (127)
	М	aximum Embedme	ent Depth	h _{ef,max}	in. (mm)	7 ¹ / ₂ (191)	10 (254)	12 ¹ / ₂ (318)	15 (381)	17 ¹ / ₂ (445)	20 (508)	25 (635)
Tem	mum Long Term perature (F (50 °C)	Cracked Concrete Characteristic Bond Strength	With Sustained Load or No Sustained Load ³	T _{k,cr}	psi (MPa)	1,040 (7.2)	1,040 (7.2)	1,110 (7.7)	1,220 (8.4)	1,210 (8.3)	1,205 (8.3)	1,145 (7.9)
Maximum Short Term Temperature 176 °F (80 °C)		Uncracked Concrete Characteristic Bond Strength	With Sustained Load or No Sustained Load ³	$\mathcal{T}_{k,uncr}$	psi (MPa)	2,600 (17.9)	2,415 (16.7)	2,260 (15.6)	2,140 (14.8)	2,055 (14.2)	2,000 (13.8)	1,990 (13.7)
Tem 161 °	num Long Term perature F (72 °C)	Cracked Concrete Characteristic Bond Strength	With Sustained Load or No Sustained Load ³	T _{k,cr}	psi (MPa)	905 (6.2)	905 (6.2)	965 (6.7)	1,060 (7.3)	1,055 (7.3)	1,050 (7.2)	995 (6.9)
Tem	num Short Term perature F (120 °C)	Uncracked Concrete Characteristic Bond Strength	With Sustained Load or No Sustained Load ³	$T_{k,uncr}$	psi (MPa)	2,265 (15.6)	2,100 (14.5)	1,970 (13.6)	1,865 (12.9)	1,785 (12.3)	1,740 (12.0)	1,730 (11.9)
	num Long Term	Cracked Concrete	With Sustained Load ³	$\tau_{k,cr}$	psi (MPa)	650 (4.5)	655 (4.5)	695 (4.8)	765 (5.3)	760 (5.2)	755 (5.2)	720 (5.0)
Tem	perature F (100 °C)	Characteristic Bond Strength	No Sustained Load	I k,cr	psi (MPa)	800 (5.5)	806 (5.6)	855 (5.9)	941 (6.5)	935 (6.4)	929 (6.4)	886 (6.1)
	num Short Term	Uncracked Concrete	With Sustained Load ³	T	psi (MPa)	1,630 (11.2)	1,515 (10.4)	1,420 (9.8)	1,345 (9.3)	1,290 (8.9)	1,255 (8.7)	1,250 (8.6)
	perature F (160 °C)	Characteristic Bond Strength	No Sustained Load	$T_{k,uncr}$	psi (MPa)	2,005 (13.8)	1,863 (12.8)	1,747 (12.0)	1,654 (11.4)	1,587 (10.9)	1,544 (10.6)	1,538 (10.6)
	Reduction Factor for Seismic Tension ⁴			α _{N,seis}					0.95			
⊆	ç		Dry Concrete	φ _d					0.65			
Periodic Inspection	Factors	th Reduction for Permissible	Water Saturated Concrete	φ _{ws}					0.55			
P _€	Installat	ion Conditions	Water-Filled Holes in Concrete	ф wf					0.45			

For SI: 1 Inch = 25.4 mm, 1 lbt = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbt, 1MPa = 145.0 psi

¹Characteristic bond strength values correspond to concrete compressive strength f'c =2,500 psi (17.2 MPa). For concrete compressive strength f'c between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'c /2,500)^{0.10}. See Section 4.1.4 of this report.

²Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a results of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

³Characteristic bond strengths are for sustained loads (when noted) including live and dead loads.

⁴For structures assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by α_{N,seis}.

TABLE 7—STEEL DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT REINFORCING BARS 1

		Symbol					FRACTION	REBAR SIZ	Έ				
DESIGN	Nominal Bar Diameter.		Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No.10		
NIi			in.	0.375	0.500	0.625	0.750	0.875	1.000	1.125	1.250		
Nomina	ai bai Diameter.	d	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(28.6)	(31.8)		
Rei	nforcing Bar	Λ	in ²	0.110	0.200	0.310	0.440	0.600	0.790	1.000	1.270		
Cross-	Sectional Area	A _{se}	(mm²)	(71)	(129)	(200)	(284)	(387)	(510)	(645)	(819)		
		N _{sa}	lb.	6,600	12,000	18,600	26,400						
	Nominal Strength as Governed by	IVsa	(kN)	(29.4)	(53.4)	(82.7)	(117.4)						
	Steel Strength	V_{sa}	lb.	3,960	7,200	11,160	15,840			forcing bars a	are		
		* 34	(kN)	(17.6)	(32.0)	(49.6)	(70.5)	#:		able in sizes per ASTM A6	815		
ASTM A615 Grade 40	Reduction Factor for Seismic Shear	αv,seis			0.65								
AST	Strength Reduction Factor for Tension ²	φ					C).65	65				
	Strength Reduction Factor for Shear ²	φ			0.60								
	Nominal Strength as Governed by Steel Strength	Λ/	lb.	9,900	18,000	27,900	39,600	54,000	71,100	90,000	114,300		
		N _{sa}	(kN)	(44.0)	(80.1)	(124.1)	(176.1)	(240.2)	(316.3)	(400.3)	(508.4)		
966		V _{sa}	lb.	5,940	10,800	16,740	23,760	32,400	42,660	54,000	68,580		
r A9		V sa	(kN)	(26.4)	(48.0)	(74.5)	(105.7)	(144.1)	(189.8)	(240.2)	(305.1)		
, A767 c	Reduction Factor for Seismic Shear	α v,seis		0.65									
ASTM A615, A767 or A996 Grade 60	Strength Reduction Factor for Tension ²	φ					C).65					
∢	Strength Reduction Factor for Shear ²	φ					C	0.60					
		N/	lb.	8,800	16,000	24,800	35,200	48,000	63,200	80,000	101,600		
	Nominal Strength as Governed by	N _{sa}	(kN)	(39.1)	(71.2)	(110.3)	(156.6)	(213.5)	(281.1)	(355.9)	(451.9)		
	Steel Strength	V _{sa}	lb.	5,280	9,600	14,880	21,120	28,800	37,920	48,000	60,960		
		v sa	(kN)	(23.5)	(42.7)	(66.2)	(93.9)	(128.1)	(168.7)	(213.5)	(271.2)		
ASTM A706 Grade 60	Reduction Factor for Seismic Shear	αv,seis					C).65					
AST Gr	Strength Reduction Factor for Tension ²	φ					C).75					
	Strength Reduction Factor for Shear ²	φ					C).65					

¹ Values provided for common rod material types are based on specified strength and calculated in accordance with ACI 318-19 Eq. 17.6.1.2 and Eq. 17.7.1.2b,

ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable.

2 For use with load combinations of Section 1605.1 of the 2021 IBC, Section 1605.2 of the 2018, 2015 and 2012 IBC, ACI 318-19 5.3, ACI 318-14 5.3 or ACI 318-19 5.3 or 11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D4.4.

- ICC-ES[®] Most Widely Accepted and Trusted

TABLE 8—CONCRETE BREAKOUT DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT¹

DESIGN INFORMATION	Cumbal	Units				FRACTION I	REBAR SIZE			
DESIGN INFORMATION	Symbol	Onits	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No.10
Minimum Embedment Depth	h _{ef,min}	in. (mm)	2 ³ / ₈ (60)	2 ³ / ₄ (70)	3 ¹ / ₈ (79)	3 ¹ / ₂ (89)	3 ¹ / ₂ (89)	4 (102)	4 ¹ / ₂ (114)	5 (127)
Maximum Embedment Depth	h _{ef,max}	in. (mm)	7 ¹ / ₂ (191)	10 (254)	12 ¹ / ₂ (318)	15 (381)	17 ¹ / ₂ (445)	20 (508)	22 ¹ / ₂ (572)	25 (635)
Effectiveness Factor For Cracked Concrete	K _{c,cr}	in-lb (SI)				1 (7	-			
Effectiveness Factor For Uncracked Concrete	K _{c,uncr}	inlb. (SI)				2 (1				
Minimum Spacing Distance	Smin	in. (mm)	1 ⁷ / ₈ (48)	2 ¹ / ₂ (64)	3 (76)	3 ³ / ₄ (95)	4 ¹ / ₄ (108)	4 ³ / ₄ (121)	5 ¹ / ₄ (133)	5 ⁷ / ₈ (149)
Minimum Edge distance	Cmin	in. (mm)	1 ⁵ / ₈ (41)	1 ³ / ₄ (44)	2 (51)	2 ³ / ₈ (60)	2 ¹ / ₂ (64)	2 ³ / ₄ (70)	3 (76)	3 ¹ / ₄ (82)
Minimum Concrete Thickness	h _{min}	in. (mm)	h _{ef} + (h _{ef} +		FO			ee Section 4.1 is the hole dia	·	OFT.
Critical Edge Distance (uncracked Concrete Only)	Cac				See	Section 4.1.	10 of this rep	ort.		
Strength Reduction Factor For Tension, Concrete Failure Mode, Condition B ²	φ					0.	65			
Strength Reduction Factor For Shear, Concrete Failure Mode, Condition B ²	φ					0.	70			

 $^{^{1}\}mbox{Additional}$ setting information is described in Figure 6, installation instructions.

²Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of *∮* applies when the load combinations of Section 1605.1 of the 2021 IBC, Section 1605.2 of the 2018, 2015 and 2012 IBC, ACI 318-19 5.3, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of *∮* must be determined in accordance with ACI 318-11 D.4.4.

TABLE 9—BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BiT^1

SKILLED WITH								FΡΛ	CTIONAL	DERAD	SIZE		
		DESIGN INFOR	MATION	Symbol	Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No.10
		Minimum Embedn	nent Depth	h _{ef,min}	in. (mm)	2 ³ / ₈ (60)	2 ³ / ₄ (70)	3 ¹ / ₈ (79)	3 ¹ / ₂ (89)	3 ¹ / ₂ (89)	4 (102)	4 ¹ / ₂ (114)	5 (127)
	ı	Maximum Embedr	h _{ef,max}	in. (mm)	7 ¹ / ₂ (191)	10 (254)	12 ¹ / ₂ (318)	15 (381)	17 ¹ / ₂ (445)	20 (508)	22 ¹ / ₂ (572)	25 (635)	
Long Temp	imum Term erature (50°C)	Cracked Concrete Characteristic Bond Strength	With Sustained Load or No Sustained Load ³	$ au_{k,cr}$	psi (MPa)	1,090 (7.5)	1,055 (7.3)	1,130 (7.8)	1,170 (8.1)	1,175 (8.1)	1,155 (8.0)	1,140 (7.9)	1,165 (8.0)
Short Temp	Maximum Short Term Temperature 176 °F (80 °C)	Uncracked Concrete Characteristic Bond Strength	With Sustained Load or No Sustained Load ³	${\cal T}_{k,uncr}$	psi (MPa)	2,200 (15.2)	2,100 (14.5)	2,030 (14.0)	1,970 (13.6)	1,920 (13.2)	1,880 (13.0)	1,845 (12.7)	1,815 (12.5)
Long Temp	Maximum Long Term Temperature 161 °F (72 °C)	Cracked Concrete Characteristic Bond Strength	With Sustained Load or No Sustained Load ³	$ au_{k,cr}$	psi (MPa)	945 (6.5)	915 (6.3)	980 (6.8)	1,015 (7.0)	1,020 (7.0)	1,005 (6.9)	995 (6.9)	1,010 (7.0)
Short Temp 248 °	t Term erature F (120 C)	Uncracked Concrete Characteristic Bond Strength	With Sustained Load or No Sustained Load ³	$\mathcal{T}_{k,uncr}$	psi (MPa)	1,915 (13.2)	1,830 (12.6)	1,765 (12.2)	1,715 (11.8)	1,670 (11.5)	1,635 (11.3)	1,615 (11.1)	1,580 (10.9)
Long	imum Term	Cracked Concrete Characteristic	With Sustained Load ³	$T_{k,cr}$	psi (MPa)	680 (4.7)	660 (4.6)	705 (4.9)	735 (5.1)	735 (5.1)	725 (5.0)	715 (4.9)	730 (5.0)
212 °	erature F (100 C)	Bond Strength	No Sustained Load	- K,U	psi (MPa)	836 (5.8)	812 (5.6)	867 (6.0)	904 (6.2)	904 (6.2)	892 (6.1)	879 (6.1)	898 (6.2)
Short	imum t Term erature	Uncracked Concrete Characteristic	With Sustained Load ³	π.	psi (MPa)	1,380 (9.5)	1,315 (9.1)	1,270 (8.8)	1,235 (8.5)	1,205 (8.3)	1,180 (8.1)	1,155 (8.0)	1,140 (7.9)
320°	F (160 C)	Bond Strength	No Sustained Load	$T_{k,uncr}$	psi (MPa)	1,697 (11.7)	1,617 (11.2)	1,562 (10.8)	1,519 (10.5)	1,482 (10.2)	1,451 (10.0)	1,421 (9.8)	1,402 (9.7)
	Reduction Factor for Seismic Tension ⁴			α _{N,seis}		0.	95			1.0	00		
			Dry Concrete	φ _d					0.0	65			
Periodic Inspection	Factors	Strength Reduction Factors for Permissible Installation Conditions	Water Saturated Concrete	ø ws					0.	55			
- <u>-</u>			Water-Filled Holes in Concrete	φ _{wf}			0.45						

 $^{^{1}}$ Characteristic bond strength values correspond to concrete compressive strength f'_{c} =2,500 psi (17.2 MPa). For concrete compressive strength f'_{c} between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'_{c} /2,500) $^{0.10}$. See Section 4.1.4 of this report.

²Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a results of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

³Characteristic bond strengths are for sustained loads (when noted) including live and dead loads.

⁴For structures assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by α_{N,Seis}.

TABLE 10—STEEL DESIGN INFORMATION FOR METRIC THREADED ROD1

	ECION INFORMATION	Ob. a.l	1114			MET	RIC THREADE	D ROD DIAME	TER	
DI	ESIGN INFORMATION	Symbol	Units	M10	M12	M16	M20	M24	M27	M30
No	ominal Anchor Diameter	d	mm (in.)	10 (0.39)	12 (0.47)	16 (0.63)	20 (0.79)	24 (0.94)	27 (1.06)	30 (1.18)
Thre	aded Rod Cross-Sectional Area	Ase	mm² (in.²)	58.0 (0.090)	84.3 (0.131)	157 (0.243)	245 (0.380)	353 (0.547)	459 (0.711)	561 (0.870)
8	Nominal Strength As Governed By Steel	N _{sa}	kN (lb)	29.0 (6,518)	42.2 (9,473)	78.5 (17,643)	122.5 (27,532)	176.5 (39,668)	229.5 (51,580)	280.5 (63,043)
Class 5.8	Strength	V _{sa}	kN (lb)	17.4 (3,911)	25.3 (5,684)	47.1 (10,586)	73.5 (16,519)	105.9 (23,801)	137.7 (30,948)	168.3 (37,826)
8-1 Cl	Reduction Factor For Seismic Shear	α <i>v,seis</i>					0.60			
ISO 898-1	Strength Reduction Factor For Tension ²	φ					0.65			
	Strength Reduction Factor For Shear ²	φ					0.60			
	Nominal Strength As Governed By Steel	N _{sa}	kN (lb)	46.4 (10,428)	67.4 (15,157)	125.6 (28,229)	196 (44,051)	282.4 (63,470)	367.2 (82,528)	448.8 (100,868)
Class 8.8	Strength	V _{sa}	kN (lb)	27.8 (6,257)	40.5 (9,094)	75.4 (16,937)	117.6 (26,431)	169.4 (38,082)	220.3 (49,517)	269.3 (60,521)
898-1 CI	Reduction Factor For Seismic Shear	α <i>v,seis</i>					0.60			
SO 89	Strength Reduction Factor For Tension ²	φ					0.65			
<u> </u>	Strength Reduction Factor For Shear ²	φ					0.60			
	Nominal Strength As Governed By Steel	N _{sa}	kN (lb)	40.6 (9,125)	59 (13,263)	109.9 (24,700)	171.5 (38,545)	247.1 (55,536)	229.5 (51,580)	280.5 (63,043)
-1, steel ³	Strength	V _{sa}	kN (lb)	24.4 (5,475)	35.4 (7,958)	65.9 (14,820)	102.9 (23,127)	148.3 (33,322)	137.7 (30,948)	168.3 (37,826)
ISO 3506-1, stainless steel ³	Reduction Factor For Seismic Shear	α _{V,seis}					0.60			
ISO A4 stair	Strength Reduction Factor For Tension ²	φ					0.65			
	Strength Reduction Factor For Shear ²	φ					0.60			

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi ¹Values provided for common rod material types based on specified strengths and calculated in accordance with ACI 318-19 Eq. 17.6.1.2 and Eq. 17.7.1.2b, ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2 b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable. Nuts and washers must comply with requirements for the rod.

²The tabulated value of ϕ applies when the load combinations of Section 1605.1 of the 2021 IBC, Section 1605.2 of the 2018, 2015 and 2012 IBC, ACI 318-19 5.3, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-19 5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. ³A4-70 Stainless steel (M8-M24); A4-50 Stainless steel (M27-M30).

TABLE 11—CONCRETE BREAKOUT DESIGN INFORMATION FOR METRIC THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT¹

DECION INFORMATION	0	11-14-			METRIC TH	READED ROD	DIAMETER					
DESIGN INFORMATION	Symbol	Units	M10	M12	M16	M20	M24	M27	M30			
Minimum Embedment Depth	h _{ef,min}	mm (in.)	60 (2.4)	70 (2.8)	80 (3.1)	90 (3.5)	96 (3.8)	108 (4.3)	120 (4.7)			
Maximum Embedment Depth	h _{ef,max}	mm (in.)	200 (7.9)	240 (9.4)	320 (12.6)	400 (15.7)	480 (18.9)	540 (21.3)	600 (23.6)			
Effectiveness Factor For Cracked Concrete	K _{c,cr}	SI (in-lb)				7 (17)						
Effectiveness Factor For Uncracked Concrete	K _{c,uncr}	SI (in-lb)				10 (24)						
Minimum Spacing Distance	Smin	mm (in.)	50 (2)	60 (2 ³ / ₈)	75 (3)	95 (3 ³ / ₄)	115 (4 ¹ / ₂)	125 (5)	140 (5 ¹ / ₂)			
Minimum Edge Distance	Cmin	mm (in.)	40 (1 ⁵ / ₈)	45 (1 ³ / ₄)	50 (2)	60 (2 ³ / ₈)	65 (2 ¹ / ₂)	75 (3)	80 (3 ¹ / ₈)			
		(111.)		(174)	For sm	naller edge dista	ances, see Sect	tion 4.1.9 of this	report.			
Minimum Concrete Thickness	h _{min}	mm (in.)		+ 30 - 1 ¹ / ₄)		h _{ef} + 2d ₀ w	here d_0 is the h	ole diameter				
Critical Edge Distance (For Uncracked Concrete Only)	Cac				See Sec	ction 4.1.10 of th	nis report.					
Strength Reduction Factor For Tension, Concrete Failure Mode, Condition B ²	φ		0.65									
Strength Reduction Factor For Shear, Concrete Failure Mode, Condition B ²	φ					0.70						

¹Additional setting information is described in Figure 6, installation instructions.

²Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of φ applies when the load combinations of Section 1605.1 of the 2021 IBC, Section 1605.2 of the 2018, 2015 and 2012 IBC, ACI 318-19 5.3, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318-11 D.4.4.

TABLE 12—BOND STRENGTH DESIGN INFORMATION FOR METRIC THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT1

				Comple a			N	IETRIC THI	READED R	OD DIAMET	ER	
	DES	SIGN INFORMAT	ION	Symbo I	Units	M10	M12	M16	M20	M24	M27	M30
	Minim	um Embedment	Depth	h _{ef,min}	mm (in.)	60 (2.4)	70 (2.8)	80 (3.1)	90 (3.5)	96 (3.8)	108 (4.3)	120 (4.7)
	Maxim	num Embedment	Depth	h _{ef,max}	mm (in.)	200 (7.9)	240 (9.4)	320 (12.6)	400 (15.7)	480 (18.9)	540 (21.3)	600 (23.6)
T Tem	num Long Ferm perature F (50 °C)	Cracked Concrete Characteristi c Bond Strength	With Sustained Load or No Sustained Load ³	$\mathcal{T}_{k,cr}$	MPa (psi)	7.2 (1,039)	7.2 (1,043)	7.7 (1,110)	8.4 (1,217)	8.3 (1,209)	8.3 (1,204)	7.9 (1,149)
T Tem	num Short Ferm perature F (80 °C)	Uncracked Concrete Characteristi c Bond Strength	With Sustained Load or No Sustained Load ³	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.7 (2,571)	16.9 (2,453)	15.6 (2,256)	14.6 (2,112)	13.9 (2,020)	13.7 (1,985)	13.7 (1,980)	
T Tem	num Long Ferm perature F (72 °C)	Cracked Concrete Characteristi c Bond Strength	With Sustained Load or No Sustained Load ³	$\mathcal{T}_{k,cr}$		6.2 (904)	6.3 (908)	6.7 (966)	7.3 (1,058)	7.2 (1,052)	7.2 (1,047)	6.9 (999)
Tem	num Short Ferm perature (120 °C)	Uncracked Concrete Characteristi c Bond Strength	With Sustained Load or No Sustained Load ³	${\mathcal T}_{k, {\it uncr}}$		15.4 (2,237)	14.7 (2,134)	13.5 (1,963)	12.7 (1,837)	12.1 (1,757)	11.9 (1,727)	11.9 (1,723)
	num Long	Cracked Concrete Characteristi	With Sustained Load ³	Ther		4.5 (651)	4.5 (654)	4.8 (696)	5.3 (763)	5.2 (758)	5.2 (755)	5.0 (720)
Tem	perature (100 °C)	c Bond Strength	No Sustained Load	, n,oi		5.5 (803)	5.5 (803)	5.9 (856)	6.5 (945)	6.4 (927)	6.4 (927)	6.2 (892)
Т	num Short Ferm perature	Uncracked Concrete Characteristi	With Sustained Load ³	T	1	11.1 (1,612)	10.6 (1,538)	9.8 (1,415)	9.1 (1,324)	8.7 (1,266)	8.6 (1,245)	8.6 (1,241)
	(160 °C)	c Bond Strength	No Sustained Load	I k,uncr		13.7 (1,980)	13.0 (1,891)	12.1 (1,748)	11.2 (1,623)	10.7 (1,552)	10.6 (1,534)	10.6 (1,534)
	Reduction	Factor for Seism	ic Tension ⁴	a N,seis					0.95			
			Dry Concrete	φ _d					0.65			
riodic		th Reduction or Permissible	Water Saturated Concrete	ϕ_{ws}					0.55			
Tempe 122°F Maximu Te Tempe 161°F Maximu Te Tempe 248°F (Maximu Te Tempe 248°F (Maximu Te Tempe 212°F (Maximu Te Tempe 212°F (Maximu Te Tempe 320°F (Installati	on Conditions	Water-Filled Holes in Concrete	Фwf					0.45			

¹Characteristic bond strength values correspond to concrete compressive strength f'c =2,500 psi (17.2 MPa). For concrete compressive strength f'c between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f′c/2,500)0.10. See Section 4.1.4 of

this report.

2Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a results of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

3Characteristic bond strengths are for sustained loads (when noted) including live and dead loads.

 $^{^4}$ For structures assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by $\alpha_{N,\text{seis.}}$

TABLE 13—STEEL DESIGN INFORMATION FOR METRIC REINFORCING BARS 1

D.	Reduction Factor For Seismic Shear	Cumbal	Units				METRIC R	EBAR SIZE			
DE		Symbol	Units	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	ø 28	ø 32
N	Iominal Bar Diameter	d	mm (in.)	10 (0.394)	12 (0.472)	14 (0.551)	16 (0.630)	20 (0.787)	25 (0.984)	28 (1.102)	32 (1.260)
Reinfo	•	A _{se}	mm² (in.²)	78.5 (0.112)	113.1 (0.175)	153.9 (0.239)	201.1 (0.312)	314.2 (0.487)	490.9 (0.761)	615.8 (0.954)	804.2 (1.247)
		N _{sa}	kN (lb)	43.2 (9,739)	62.2 (14,024)	84.7 (19,088)	110.6 (24,932)	172.8 (38,956)	270.0 (60,868)	338.7 (76,353)	442.3 (99,727)
t 500		V _{sa}	kN (lb)	25.9 (5,843)	37.3 (8,414)	50.8 (11,453)	66.4 (14,959)	103.7 (23,373)	162.0 (36,521)	203.2 (45,812)	265.4 (59,836)
		<i>α</i> v,seis					0.	65			
DIN 4		φ					0.	65			
	Strength Reduction Factor For Shear ²	φ					0.	60			

1 Values provided for common bar material types based on specified strengths and calculated in accordance with ACI 318-19 Eq. 17.6.1.2 and Eq. 17.7.1.2b, ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2 b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable.

TABLE 14—CONCRETE BREAKOUT DESIGN INFORMATION METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT1

DEGICAL INFORMATION	0	11.2				METRIC	REBAR SIZE						
DESIGN INFORMATION	Symbol	Units	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	ø 32			
Minimum Embedment Depth	h _{ef,min}	mm (in.)	60 (2.4)	70 (2.8)	75 (3.0)	80 (3.1)	90 (3.5)	100 (3.9)	112 (4.4)	128 (5.0)			
Maximum Embedment Depth	h _{ef,max}	mm (in.)	200 (7.9)	240 (9.4)	280 (11.0)	320 (12.6)	400 (15.7)	500 (19.7)	560 (22.0)	640 (25.2)			
Effectiveness Factor For Cracked Concrete	k _{c,cr}	SI (in-lb)					7 (17)						
Effectiveness Factor For Uncracked Concrete	K c,uncr	SI (in-lb)	-lb) (24)										
Minimum Spacing Distance	Smin	mm (in.)	50 (2)	60 (2 ³ / ₈)	70 (2 ³ / ₄)	75 (3)	95 (3 ³ / ₄)	120 (4 ⁵ / ₈)	130 (5 ¹ / ₄)	150 (5 ⁷ / ₈)			
Minimum Edge distance	Cmin	mm (in.)	40 (1 ⁵ / ₈)	45 (1 ³ / ₄)	50 (2)	50 (2) For smaller ed	60 (2 ³ / ₈) Ige distances, s	70 (2 ³ / ₄) ee Section 4.1	75 (3)	85 (3 ¹ / ₈)			
Minimum Concrete Thickness	h _{min}	mm (in)		+ 30 + 1 ¹ / ₄			+ 2 <i>d</i> ₀ where d ₀			· · ·			
Critical Edge Distance (For Uncracked Concrete Only)	Cac					See Section	4.1.10 of this re	port.					
Strength Reduction Factor For Tension, Concrete Failure Modes, Condition B ²	φ		0.65										
Strength Reduction Factor For Shear, Concrete Failure Modes, Condition B ²	φ		0.70										

²The tabulated value of ∮ applies when the load combinations of Section 1605.1 of the 2021 IBC, Section 1605.2 of the 2018, 2015 and 2012 IBC, ACI 318-19 5.3, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318-11 D.4.4.

¹Additional setting information is described in <u>Figure 6</u>, installation instructions. ²Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of ϕ applies when the load combinations of Section 1605.1 of the 2021 IBC, Section 1605.2 of the 2018, 2015 and 2012 IBC, ACI 318-19 5.3, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4.

TABLE 15—BOND STRENGTH DESIGN INFORMATION METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT¹

									METRIC	REBAR SI	ZE			
	DESIG	3N INFOR	МАТІО	N	Symbol	Units	10	12	14	16	20	25	28	32
	Minimu	m Embedn	nent De	pth	h _{ef,min}	mm (in.)	60 (2.4)	70 (2.8)	80 (3.0)	90 (3.1)	96 (3.5)	100 (3.9)	112 (4.4)	128 (5.0)
	Maximu	m Embedr	nent De	epth	h _{ef,max}	mm (in.)	200 (7.9)	240 (9.4)	320 (11.0)	400 (12.6)	480 (15.7)	400 (19.7)	560 (22.0)	640 (25.2)
Maxir Long Tempe	Term erature	Crack Concr Characte Bon Strene	ete eristic d	With Sustained Load or No Sustained Load ³	T _{k,cr}	MPa (psi)	7.5 (1,082)	7.3 (1,060)	7.9 (1,144)	8.2 (1,193)	8.2 (1,188)	8.0 (1,158)	7.9 (1,144)	8.0 (1,163)
Maxir Short Tempe 176 °F	Term erature	Uncrac Concr Characte Bon Strene	ete eristic d	With Sustained Load or No Sustained Load ³	$T_{k,uncr}$	MPa (psi)	15.1 (2,183)	14.6 (2,121)	14.0 (2,025)	14.0 (2,025)	13.5 (1,954)	13.0 (1,886)	12.8 (1,852)	12.5 (1,813)
Maxir Long Tempe 161 °F (Maxir	Term erature (72 °C)	Crack Concr Characte Bon Strene	ete eristic d	With Sustained Load or No Sustained Load ³	$\mathcal{T}_{k,cr}$	MPa (psi)	6.5 (942)	6.4 (922)	6.9 (996)	7.2 (1,038)	7.1 (1,034)	6.9 (1,008)	6.9 (995)	7.0 (1,012)
Short Tempe 248 °F	Term erature (120	Uncrac Concr Characte Bon Strene	ete eristic d	With Sustained Load or No Sustained Load ³	$T_{k,uncr}$	MPa (psi)	13.1 (1,899)	12.7 (1,845)	12.1 (1,762)	12.1 (1,762)	11.7 (1,700)	11.3 (1,640)	112	10.9 (1,577)
Maxir Long		Crack Concr Characte	ete	With Sustained Load ³	$T_{k,cr}$	MPa (psi)	4.5 (678)	4.6 (665)	4.9 (718)	5.2 (748)	5.1 (745)	5.0 (726)		5.0 (729)
Tempe 212 °F °C	(100 C)	Bon Stren	d	No Sustained Load	I K,Cr	MPa (psi)	5.5 (803)	5.7 (820)	6.0 (874)	6.4 (927)	6.3 (910)	6.2 (892)	E .	6.2 (892)
Maxir Short Tempe	Term erature	Uncrad Concr Characte	ete	With Sustained Load ³	$T_{k, uncr}$	MPa (psi)	9.4 (1,369)	9.2 (1,329)	8.8 (1,270)	8.8 (1,270)	8.4 (1,225)	8.2 (1,182)		7.8 (1,136)
320 °F °C		Bon Stren	d	No Sustained Load	I k,uncr	MPa (psi)	11.6 (1,676)	11.3 (1,641)	10.8 (1,569)	10.8 (1,569)	10.3 (1,498)	10.1 (1,462)	t .	9.6 (1,391)
Red	duction Fa	actor for Se	eismic ⁻	Tension ⁴	α N,seis		0.9	95			1.	00		
	Stra	enath	Dr	y Concrete	Фа				•	0.0	65			
Periodic Inspection	Red Fact	uction ors for nissible		er Saturated Concrete	φ ws					0.8	55			
P _ξ	Insta	allation ditions		ater-Filled Holes Concrete	Фwf					0.	45			

 $^{^{1}}$ Characteristic bond strength values correspond to concrete compressive strength f'_{c} =2,500 psi (17.2 MPa). For concrete compressive strength f'_{c} between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'_{c} /2,500) $^{0.10}$. See Section 4.1.4 of this report.

²Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a results of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

³Characteristic bond strengths are for sustained loads (when noted) including live and dead loads.

⁴For structures assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by α_{N,Seis.}

- ICC-ES[®] Most Widely Accepted and Trusted

TABLE 16—DEVELOPMENT LENGTH FOR U.S. CUSTOMARY UNIT REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT 1, 2, 4

	_	Critoria Soction of				FR	ACTIONAL	REBAR	SIZE		
DESIGN INFORMATION	eter	Reference Standard	Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No.10
N	,	AOTM AO45/A700	in.	0.375	0.500	0.625	0.750	0.875	1.000	1.125	1.250
Nominal rebar diameter	аь	ASTM A615/A706	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(28.6)	(31.8)
			in ²	0.11	0.20	0.31	0.44	0.60	0.79	1.00	1.27
Nominal rebar area	Ab	ASTM A615/A706	(mm²)	(71.3)	(126.7)	(197.9)	(285.0)	(387.9)	(506.7)	(644.7)	(817.3)
Development length for $f_V = 60$ ksi and $f'_C =$		ACI 318-19 25.4.2.4 or	in.	12.0	14.4	18.0	21.6	31.5	36.0	40.5	45.0
2,500 psi (normal weight concrete) ³	ld	ACI 318-14 25.4.2.3 or ACI 318-11 12 2 3	(mm)	(304.8)	(365.8)	(457.2)	(548.6)	(800.1)	(914.4)	(1028.7)	(1143)
Development length for $f_V = 60$ ksi and $f'_C =$		ACI 318-19 25.4.2.4 or	in.	12.0	12.0	14.2	17.1	24.9	28.5	32.0	35.6
4,000 psi (normal weight concrete) ³	la	ACI 318-14 25.4.2.3 or ACI 318-11 12.2.3	(mm)	(304.8)	(304.8)	(361.4)	(433.7)	(632.5)	(722.9)	(812.8)	(904.2)

For **SI:** 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

$${}^{4}\left(\frac{c_b + K_{tr}}{d_b}\right) = 2.5$$
, $\psi_t = 1.0$, $\psi_e = 1.0$, $\psi_s = 0.8$ for $d_b \le \#6$, 1.0 for $d_b > \#6$.

TABLE 17—DEVELOPMENT LENGTH FOR METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT 1, 2, 4

	_					MET	RIC REBAR	SIZE		
DESIGN INFORMATION	Symbol	Criteria Section of Reference Standard	Units	8	10	12	16	20	25	32
Nominal reinforcing bar	,	DO 4440 0005	mm	8	10	12	16	20	25	32
diameter	d♭	BS 4449: 2005	(in.)	(0.315)	(0.394)	(0.472)	(0.630)	(0.787)	(0.984)	(1.260)
		DO 1110 0005	mm ²	50.3	78.5	113.1	201.1	314.2	490.9	804.2
Nominal bar area	Ab	BS 4449: 2005	(in²)	(80.0)	(0.12)	(0.18)	(0.31)	(0.49)	(0.76)	(1.25)
Development length for f_y = 72.5 ksi and f'_c = 2,500		ACI 318-19 25.4.2.4 ⁵ or	mm	305	348	417	556	871	1087	1392
psi (normal weight concrete) ³	la	ACI 318-14 25.4.2.3 or ACI 318-11 12.2.3	(in.)	(12.0)	(13.7)	(16.4)	(21.9)	(34.3)	(42.8)	(54.8)
Development length for f_y = 72.5 ksi and f'_c = 4,000		ACI 318-19 25.4.2.4 ⁵ or	mm	305	305	330	439	688	859	1100
psi (normal weight concrete) ³	la	ACI 318-14 25.4.2.3 or ACI 318-11 12.2.3	(in.)	(12.0)	(12.0)	(13.0)	(17.3)	(27.1)	(33.8)	(43.3)

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

$${}^{4}\left(\frac{c_{b}+K_{tr}}{d_{b}}\right)=2.5 \text{ , } \psi_{t}=1.0, \ \psi_{e}=1.0, \ \psi_{s}=0.8 \text{ for } d_{b}<20 \text{mm}, \ 1.0 \text{ for } d_{b}\geq20 \text{mm}.$$

¹Development lengths valid for static, wind, and earthquake loads (SDC A and B).

²Development lengths in SDC C through F must comply with ACI 318-19 Chapter 18, ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21 and Section 4.2.4 of this report.

 $^{^3}$ f_v and f_c used in this table are for example purposes only. For sand-lightweight concrete, increase development length by 33%, unless the provisions of ACI 318-19 25.4.2.5, ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4 (d) are met to permit $\lambda > 0.75$.

¹Development lengths valid for static, wind, and earthquake loads (SDC A and B).

² Development lengths in SDC C through F must comply with ACI 318-19 Chapter 18, ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21 and Section 4.2.4 of this report.

 $^{^3}$ f_y and f_c used in this table are for example purposes only. For sand-lightweight concrete, increase development length by 33%, unless the provisions of ACI 318-19 25.4.2.5, ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4 (d) are met to permit $\lambda > 0.75$.

 $^{^{5}}$ I_{d} must be increased by 9.5% to account for ψ_{g} in ACI 318-19 25.4.2.4. ψ_{g} has been interpolated from Table 25.4.2.5 of ACI 318-19 for f_{y} = 72.5 ksi.

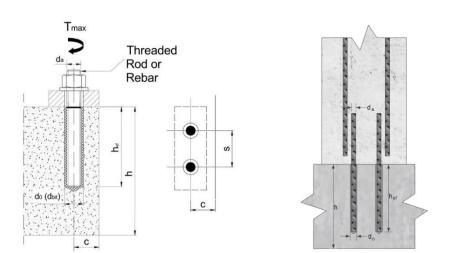


FIGURE 2—INSTALLATION PARAMETERS FOR THREADED RODS AND REINFORCING BARS

FIGURE 3—ULTRABOND HYB-2CC TYPICAL ADHESIVE ANCHOR SYSTEM

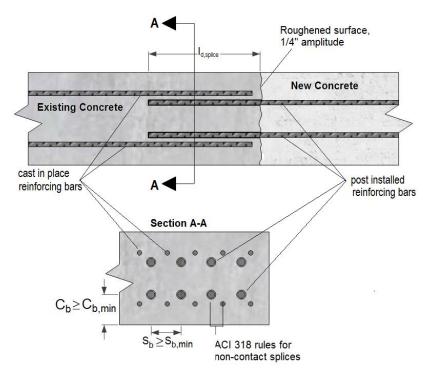


FIGURE 4—INSTALLATION PARAMETERS FOR POST-INSTALLED REINFORCING BARS

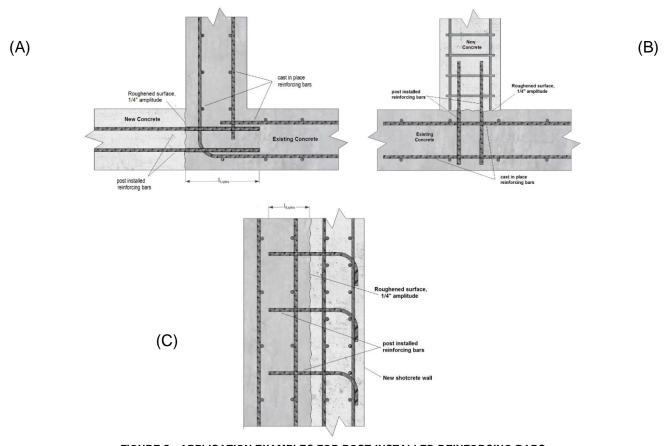


FIGURE 5—APPLICATION EXAMPLES FOR POST-INSTALLED REINFORCING BARS:

(A) TENSION LAP SPLICE WITH EXISTING FLEXURAL REINFORCEMENT; (B) TENSION DEVELOPMENT OF COLUMN DOWELS;

(C) DEVELOPMENT OF SHEAR DOWELS FOR NEWLY THICKENED SHEAR WALL

ULTRABOND® HYB-2CC Adhesive Anchor Installation Instructions

Installation Instructions

Drilling and Cleaning - Hammer Drilled Holes

- Using a rotary hammer drill and standard carbide bit, drill hole to specified diameter and depth required by the anchor rod or rebar. In case of standing water in drilled hole, all water must be removed from hole prior to cleaning. Starting at the bottom of the anchor hole, blow out hole 2 cycles (2X) using oil free compressed air (minimum pressure of 87 psi (6 bar).
- Select the correct wire brush for the hole diameter. Brush for 2 cycles (2X) in
- up/down twisting motion.
 Repeat step 2, then confirm that hole is clean and free of dust

Dispensing Preparation - Cartridge Systems

- Check the expiration date on the cartridge to ensure it is not expired. Do not use expired product! Cartridge temperature must be between 41 *F - 104 *F (5 °C - 40 °C) when in use. Remove protective cap. Screw on proper, non-modified ATC mixing nozzle to cartridge. Ensure mixing element is inside the nozzle Load cartridge into the correct dispensing tool.
- Prior to inserting the anchor rod or rebar into the filled drilled hole, mark the embedment depth position on the anchor. Verify the anchor is straight and free of surface damage.
 Dispense and waste 3 full strokes material to ensure uniform gray color before
- injecting into hole. Review and note the published working and cure times prior to ection of the mixed adhesive into the clean anchor hole

Installation and Curing

- Fill hole 2/3 full with mixed adhesive starting at the bottom and slowly withdraw as hole fills using an extension tube as needed.

 If extension tube (Part #T16EXTL) is required, first cut the tip of the mixer nozzle
- Use piston plugs for overhead and vertically inclined installations, all installations with drill hole depth > 10" (250 mm), with anchor rod 5/8" to 1-1/4" (M16 to M30) diameter and rebar sizes #5 to #10 (Ø14 to Ø32). Insert piston plug to the back of the drilled hole and inject as described above.

- Fully insert clean threaded rod or rebar with slow turning motion to the bottom of the hole. Observe gel (working) time.
- Ensure the anchor is fully seated at the bottom of the hole and that some adhesive has flowed from the hole and all around the top of the anchor. If not, the installation must be repeated. For horizontal, inclined or overhead installations, use wedges to support the anchor while curing.
- Do not disturb, torque or apply load until full cure time has passed.

Reference Commentary

Drilling and Cleaning - Hammer Drilled Holes
Read and follow manufacturer's operations manual for the selected rotary drill.
R1. Drill bit should conform to ANSI B212.15. Refer to the installation tables for ULTRABOND HYB-2CC applicable hole diameters and embedment depth ranges. CAUTION: Always wear appropriate personal protection equipment (PPE) for eyes, ears and skin to help avoid inhalation of dust during the drilling and cleaning process. Refer to

equipment (Y=2) or legs, easi and sain of their avoid minimation of discounting die draining process. Refer to the Safety Data Sheet (SDS) for details prior to proceeding.

R2. BLOW (2X) – BRUSH (2X) – BLOW (2X). The compressed air wand should be inserted to the bottom of the hole, have a minimum pressure of 87 psi (6 bar) and be moved in an up/down motion to remove debris.

R3. Refer to the installation tables for ULTRABOND HYB-2CC for wire brush selection. CAUTION: The brush should be

clean and contact the walls of the hole. If it does not, the brush is either too worn or small and should be replaced with a new brush of the correct diameter. A brush extension must be used for drill hole depth > 6 inches (150 mm). The wire brush diameter must be checked periodically during use.

R4. After final blow step is completed, visually inspect the hole to confirm it is clean and free of dust, debris, ice, grease. oil or other foreign material. NOTE: If installation will be delayed for any reason, cover cleaned holes to prevent contamination.

Dispensing Preparation - Cartridge Systems
R5. Review Safety Data Sheet (SDS) before use. Review working and cure times. Consideration should be given to the reduced gel (working) time of the adhesive in warm temperatures. For permitted range of base material see the Cure Schedule. Always use a new mixing nozzle with new cartridges of adhesive and also for all work interruptions exceeding the published gel (working) time of the adhesive. Never re-use nozzles and do not attempt to force adhesive out of a hardened mixing nozzle. Shelf life of ULTRABOND HYB-2CC is 18 months when stored at temperatures between 41 °F (5 °C) and 77 °F (25 °C). Optional: Before attaching mixing nozzle, balance the cartridge by dispensing a small amount of material until both components are flowing evenly. For a cleaner environment, hand mix the two components and let cure prior to disposal in accordance with local regulations.

R6. Refer to the installation tables for ULTRABOND HYB-2CC applicable embedment depth ranges.

R7. Test bead of mixed adhesive must be uniform in color and free of streaks, as adhesive must be properly mixed in order The restriction of the control of th

Installation and Curing

NOTE: Building Code Requirements for Structural Concrete (ACI 318-14 and later) requires the Installer to be certified where adhesive anchors are to be installed in horizontal to vertically inclined (overhead) installation The engineering drawings must be followed. For all applications not covered by this document, or for all installation questions, please contact Adhesives Technology Corp.
R8a. Be careful not to withdraw the mixing nozzle too quickly as this may trap air in the adhesive. Extension tubing (Part #'s T16EXT or T16EXTL) can be connected as needed onto the outside tip of the mixing nozzle. NOTE: When using a

pneumatic dispensing tool, ensure that pressure is set at 90 psi (6.2 bar) maximum.

R8b. This step is not necessary if using extension tube (Part # T16EXT).

Rec. Refer to the installation tables for ULTRABOND HYB-2CC for piston plug selection. During installation the piston plug will be naturally extruded from the drilled hole by the adhesive pressure. CAUTION: In addition to the installer being certified, do not install adhesive anchors overhead or vertically inclined without installation hardware supplied by ATC.

R9a. Prior to inserting the threaded rod or rebar into the hole, make sure it is straight, clean and free of oil/dirt and that the necessary embedment depth is marked on the anchor element. Insert the anchor elements into the hole while turning 1 - 2 rotations prior to the anchor reaching the bottom of the hole. Excess adhesive should be visible on all sides of the fully installed rod or rebar. Reinforcing bars must not be bent affer installation except as set forth in ACI 318-14 Section 7.3.2, as applicable, with the additional condition that the bars must be bent cold, and heating of reinforcing bars to facilitate field bending is not permitted. CAUTION: Use extra care with deep embedment or high temperature installations to ensure that he working time has not elapsed prior to the anchor being fully installed. of might emperature instantations to ensure uniter working time has not enjoyee prior to the anchor alignment may only performed during the published working time for a given temperature. R9b. For overhead, horizontal and inclined (between horizontal and overhead), wedges should be used to support the anchor while the adhesive is curing. Take appropriate steps to protect the exposed threads of the anchor element from uncured adhesive until after the full cure time has elapsed.

R10. The amount of time needed to reach full cure is base material dependent. Refer to the chart for appropriate full cure The amount of interference of react inductes to assert material dependent. Never to the chart of applyonate unit cute time for a given temperature. Refer to the installation tables for ULTRABOND HYB-2CC to ensure proper torque is used. Take care not to exceed the maximum torque for the selected anchor. After full cure time has passed, a fixture can be installed to the anchor and tightened up to the maximum torque.

CC-ES[®] Most Widely Accepted and Trusted

ULTRABOND® HYB-2CC Adhesive Anchor Installation Instructions

								Fractional Thre	aded Rod (inch)			
	Characteris	tio	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	N/A	1 1/4
	Characteris	uc	Symbol	Units				Fractional	Rebar Size			
					#3	#4	#5	#6	#7	#8	#9	#10
	Nominal Anche	or Diameter	d _a	in.	0.375	0.500	0.625	0.750	0.875	1.000		1.250
g	Drill S	ize	d _o	in.	7/16	9/16	11/16	7/8	1	1 1/8		1 3/8
S ₀	Brush P	art #		-	BP716	BP916	BP1116	BP78	BP100	BP118		BP138
ф	Piston Plug	g Part#			Not Re	equired	PA1116-5PK	PA78-5PK	PA100-5PK	PA118-5PK	N/A	PA138-5PK
rea	Brush Dia	ameter		in.	0.528	0.654	0.787	0.976	1.122	1.252		1.504
£	Maximum	A36/A307	T	Ft-lb	15 ¹	30	44	66	96	147		221
	Tightening Torque	Carbon Steel	T Inst,max	(N-m)	(20)	(41)	(60)	(89)	(130)	(199)		(300)
	Nominal Anche	or Diameter	d _a	in.	0.375	0.500	0.625	0.750	0.875	1.000	1.125	1.250
-	Drill S	ize	d _o	in.	1/2	5/8	3/4	7/8	1	1 1/8	1 3/8	1 1/2
eps	Brush F	Part #			BP12	BP58	BP34	BP78	BP100	BP118	BP138	BP112
ď	Piston Plu	g Part#			Not Re	equired	PA34-5PK	PA78-5PK	PA100-5PK	PA118-5PK	PA138-5PK	PA112-5PK
	Donah Di				0.500	0.700	0.040	0.070	4.400	4.050	4.504	4 000

for ASTM 36 and F1554 Grade 36, T_{max} = 11 ft.-lb.

INSTALLATION PARAMETERS FOR METRIC THREADED ROD AND REBAR

IIIO II IEEI IIIOI	FARAMETER	O I OK ME	INIC THIRLE	ADED ROL	AND ILL													
Charact	toriotio	Symbol	Units			Metric	c Threade	d Rod						Metric R	ebar Size			
Charac	teristic	Symbol	Units	M10	M12	M16	M20	M24	M27	M30	10	12	14	16	20	25	28	32
Nominal Anch	nor Diameter	d _a	mm	10	12	16	20	24	27	30	10	12	14	16	20	25	28	32
Drill:	Size	d _o	mm	12	14	18	22	28	30	35	14	16	18	20	25	32	35	40
Brush	Part#			BP716	BPM14	BP1116	BPM24	BPM28	BP118	BPM35	BPM14	BPM16	BP1116	BPM20	BPM25	BPM32	BPM35	BPM40
Piston Plu	ig Part#			Not Re	equired	PAM18- 5PK	PA78- 5PK	PA118- 5PK	PAM30- 5PK	PAM138- 5PK	Not Re	equired	PAM18- 5PK	PAM20- 5PK	PAM100- 5PK	PAM32- 5PK	PA138- 5PK	PAM40- 5PK
Brush D	iameter		mm	13.5	15.5	20	24	30	32	37	15.5	17.5	20	22	27	34	37	43.5
Maximum Tightening Torque	A36/A307 Carbon Steel	T _{Inst,max}	N-m (Ft-lb)	20 (15)	40 (30)	80 (59)	120 (89)	170 (125)	250 (184)	300 (221)	20 (15)	40 (30)	45 (33)	80 (59)	120 (89)	175 (129)	250 (184)	300 (221)

CONCRETE BREAKOUT DESIGN INFORMATION FOR FRACTIONAL THREADED ROD AND REBAR

					Fractio	nal Threaded	Rod Diamete	r (inch)		
Design Information	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	N/A	1 1/4
Design information	Syllibol	Ollits				Fractional	Rebar Size			
			#3	#4	#5	#6	#7	#8	#9	#10
Minimum Embedment Depth	h _{et.min}	in.	2 3/8	2 3/4	3 1/8	3 1/2	3 1/2	4	4 1/2	5
Minimum Embedment Depar	** er,min	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(114)	(127)
Maximum Embedment Depth	h _{et.max}	in.	7 1/2	10	12 1/2	15	17 1/2	20	22 1/2	25
Maximum Embedment Depar	r er,max	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(572)	(635)
Maximum Embedment Depth (PIR)	h _{et.max}	in.	22 1/2	30	37 1/2	45	52 1/2	60	67 1/2	75
waximum Embeament Deput (Firt)	r er,max	(mm)	(572)	(762)	(953)	(1143)	(1334)	(1524)	(1715)	(1905)
Minimum Spacing Distance	S min	in.	1 7/8	2 1/2	3	3 5/8	4 1/4	4 3/4	5 1/4	5 7/8
Willing Option of Distance	3 mn	(mm)	(48)	(64)	(76)	(92)	(108)	(121)	(133)	(149)
Minimum Edge Distance with 100% T _{max}	C min	in.	1 5/8	1 3/4	2	2 3/8	2 1/2	2 3/4	3	3 1/4
William Lage Distance with 100 % 1 max	○ mn	(mm)	(41)	(44)	(51)	(60)	(64)	(70)	(76)	(83)
Minimum Edge Distance with 45% T _{max}	C min	in.				1	3/4		2	3/4
Minimum Edge Distance with 45% I max	∪ mn	(mm)				(4	4)		(7	70)
Minimum Concrete Thickness	h min	in.		+ 1.25		h - s t	2d-where d-	is the hold diar	meter	
WILLIAM CONCIETE THICKNESS	// min	(mm)	(h ef	+ 30)	I	II ef 1	Zug wilele ug	io uio nolu ulai	Hotor	

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 006894 MPa. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

CONCRETE BREAKOUT DESIGN INFORMATION F						Threade	d Rod						Metric Re	ebar Size			
Design Information	Symbol	Units	M10	M12	M16	M20	M24	M27	M30	10	12	14	16	20	25	28	32
Minimum Embedment Depth	h etmh	mm	60	70	80	90	96	108	120	60	70	75	80	90	100	112	128
·		(in.)	(2.4)	(2.8)	(3.1)	(3.5)	(3.8)	(4.3)	(4.7)	(2.4)	(2.8)	(3.0)	(3.1)	(3.5)	(3.9)	(4.4)	(5.0)
Maximum Embedment Depth	h et.max	mm	200	240	320	400	480	540	600	200	240	280	320	400	500	560	640
	··· ei,max	(in.)	(7.9)	(9.4)	(12.6)	(15.7)	(18.9)	(21.3)	(23.6)	(7.9)	(9.4)	(11.0)	(12.6)	(15.7)	(19.7)	(22.0)	(25.2)
Maximum Embedment Depth (PIR)	h ef,max	mm								600 (23.6)	720 (28.3)	840 (33.1)	960 (37.8)	1200 (47.2)	1500 (59.1)	1680 (66.1)	1920 (75.6)
	_	(in.)															
Minimum Spacing Distance	S min	mm	50	60	80	100	120	135	150	50	60	70	80	100	125	140	160
· -		(in.)	(2.0)	(2.4)	(3.1)	(3.9)	(4.7)	(5.3)	(5.9)	(2.0)	(2.4)	(2.8)	(3.1)	(3.9)	(4.9)	(5.5)	(6.3)
Minimum Edge Distance with 100% Tmax	C min	mm	45	45	55	60	70	75	80	45	45	50	55	60	70	75	85
max	- min	(in.)	(1.8)	(1.8)	(2.2)	(2.4)	(2.8)	(3.0)	(3.1)	(1.8)	(1.8)	(2.0)	(2.2)	(2.4)	(2.8)	(3.0)	(3.3)
Minimum Edge Distance with 45% Tmax	C min	mm				4	5		70				4	5		7	0
Williman Lage Distance Wal 4576 I max	o min	(in.)		_		(1	.8)		(2.8)		-		(1	.8)		(2	.8)
Minimum Concrete Thickness	h min	mm		+ 30	h +	2d, when	ed is the	hold dia	meter	h _{ef}			h + 2d	where d	is the hole	d diamete	r
William Concrete Trickness	"" min	(in.)	(her +	1.25)	" ef	Zoo wilei	o do la tric	, nord did	notol	(her +	1.25)	,	" ef . 200	aniore d _o	io trio fion	a didifficto	

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 006894 MPa. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

CURE SCHEDULE¹

Base Material Tempature		Working Time	Full Cure Time	
°F	(°C)			
23 to 31	(-5 to -1)	50 min	5 hr	
32 to 40	(0 to 4)	25 min	3.5 hr	
41 to 49	(5 to 9)	15 min	2 hr	
50 to 58	(10 to 14)	10 min	1 hr	
59 to 67	(15 to 19)	6 min	40 min	
68 to 85	(20 to 29)	3 min	30 min	
86 to 104	(30 to 40)	2 min	30 min	

Condition (warm) cartridge to 41 °F to 104 °F for installations from 23 °F to 40 °F.

ADTICSTVE DISPENSING TOOLS AND MIXING NOZZEES							
Accessory	9.5 fl. oz. (280 ml) Cartridge	13.9 fl. oz. (410 ml) Cartridge	27.9 fl. oz. (825 ml) Cartridge				
Part #	A10-HYB2CC	A14-HYB2CC	A28-HYB2CC				
Manual Dispensing Tool	TM10-HYB	TM14-HYB	TM28HD				
Pneumatic Dispensing Tool			TA28-HYB				
Recommended Mixing Nozzle	T16-3PK						
Brush Extension	BP-EXT						
Brush Extension with Handle	BP-EXTH						
Nozzle Extension Tubing	T16EXT		T16EXTL				
Retention Wedge	WEDGE						

Cartridge Size fl. oz.	Injection Tools	d₅	h _{ef}	Extension Tube
9.5	Manual Tool	≤#5	≤ 27-1/2 (inch)	
13.9	Wandar 1001	≤ 16 (mm)	≤ 700 (mm)	T16EXT
		≤#5	≤ 39-1/2 (inch)	TIBEXT
	Pneumatic Tool	≤ 16 (mm)	≤ 1,000 (mm)	
28		≤ #8	≤ 27-1/2 (inch)	
20		≤ 25 (mm)	≤ 700 (mm)	
		≤#10	≤ 75 (inch)	T16EXTL
		≤ 32 (mm)	≤ 1,920 (mm)	

ADHESIVES TECHNOLOGY.**

ICC-ES Evaluation Report

ESR-4535 City of LA Supplement

Reissued March 2025

This report is subject to renewal March 2026.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS

Section: 05 05 19—Post-Installed Concrete Anchors

REPORT HOLDER:

ADHESIVES TECHNOLOGY CORPORATION (ATC)

EVALUATION SUBJECT:

ADHESIVES TECHNOLOGY CORPORATION (ATC) ULTRABOND® HYB-2CC ADHESIVE ANCHOR SYSTEM AND POST-INSTALLED REINFORCING BAR SYSTEM IN CRACKED AND UNCRACKED CONCRETE

1.0 REPORT PURPOSE AND SCOPE

Purpose:

The purpose of this evaluation report supplement is to indicate that the ULTRABOND HYB-2CC Adhesive Anchor System and Post-Installed Reinforcing Bar System in cracked and uncracked concrete, described in ICC-ES evaluation report <u>ESR-4535</u>, have also been evaluated for compliance with the codes noted below as adopted by Los Angeles Department of Building and Safety (LADBS).

Applicable code editions:

- 2017 City of Los Angeles Building Code (LABC)
- 2017 City of Los Angeles Residential Code (LARC)

2.0 CONCLUSIONS

The ULTRABOND HYB-2CC Adhesive Anchor System and Post-Installed Reinforcing Bar System in cracked and uncracked concrete, described in Sections 2.0 through 7.0 of the evaluation report <u>ESR-4535</u>, comply with LABC Chapter 19, and LARC, and are subject to the conditions of use described in this report.

3.0 CONDITIONS OF USE

The ULTRABOND HYB-2CC Adhesive Anchor System and Post-Installed Reinforcing Bar System described in this evaluation report supplement must comply with all of the following conditions:

- All applicable sections in the evaluation report <u>ESR-4535</u>.
- The design, installation, conditions of use and labeling of the anchors are in accordance with the 2015 International Building Code® (IBC) provisions noted in the evaluation report <u>ESR-4535</u>.
- The design, installation and inspection are in accordance with additional requirements of LABC Chapters 16 and 17, as applicable.
- Under the LARC, an engineered design in accordance with LARC Section R301.1.3 must be submitted.
- The allowable and strength design values listed in the evaluation report and tables are for the connection of the anchors to the concrete. The connection between the anchors and the connected members shall be checked for capacity (which may govern).

This supplement expires concurrently with the evaluation report, reissued March 2025.

ICC-ES Evaluation Report

ESR-4535 FL Supplement

Reissued March 2025

This report is subject to renewal March 2026.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS

Section: 05 05 19—Post-Installed Concrete Anchors

REPORT HOLDER:

ADHESIVES TECHNOLOGY CORPORATION (ATC)

EVALUATION SUBJECT:

ADHESIVES TECHNOLOGY CORPORATION (ATC) ULTRABOND® HYB-2CC ADHESIVE ANCHOR SYSTEM AND POST-INSTALLED REINFORCING BAR SYSTEM IN CRACKED AND UNCRACKED CONCRETE

1.0 REPORT PURPOSE AND SCOPE

Purpose:

The purpose of this evaluation report supplement is to indicate that the ULTRABOND HYB-2CC adhesive anchors, described in ICC-ES evaluation report ESR-4535, have also been evaluated for compliance with the codes noted below.

Applicable code editions:

- 2017 Florida Building Code—Building
- 2017 Florida Building Code—Residential

2.0 CONCLUSIONS

The ULTRABOND HYB-2CC adhesive anchors, described in Sections 2.0 through 7.0 of the evaluation report ESR-4535, comply with the *Florida Building Code—Building* and the *Florida Building Code—Residential*, provided the design and installation are in accordance with the 2015 *International Building Code®* provisions noted in the evaluation report.

Use of the ULTRABOND HYB-2CC adhesive anchors with stainless steel threaded rod materials and reinforcing bars has also been found to be in compliance with the High-Velocity Hurricane Zone provisions of the *Florida Building Code—Building* and the *Florida Building Code—Residential*.

Use of the ULTRABOND HYB-2CC adhesive anchors with carbon steel standard steel threaded rod materials for compliance with the High-velocity Hurricane Zone provisions of the *Florida Building Code—Building* and the *Florida Building Code—Residential* has not been evaluated and is outside the scope of the supplemental report.

For products falling under Florida Rule 9N-3, verification that the report holder's quality assurance program is audited by a quality assurance entity approved by the Florida Building Commission for the type of inspections being conducted is the responsibility of an approved validation entity (or the code official, when the report holder does not possess an approval by the Commission).

This supplement expires described concurrently with the evaluation report, reissued March 2025.

