

NON-SAG, HIGH-MODULUS, HIGH-STRENGTH DOWELING GEL

TECHNICAL LOAD VALUES

Threaded Rod Diameter in.	Nominal Drill Bit Diameter in.	Embedment Depth in. (mm)	Tension Load Based on Bond Strength/Concrete Capacity						Allowable Tension Load Based on		
			f'c ≥ 3,000 psi (20.7 MPa)4		f'c ≥ 5,000 psi (34.5 MPa)4		f'c ≥ 7,000 psi (48.3 MPa)4		Steel Strength		
									ASTM F1554	ASTM A193	ASTM F593
			Ultimate Ibs. (kN)	Allowable Ibs. (kN)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)	lbs. (kN) Grade 36	Grade B7 Ibs. (kN)	304/316 SS Ibs. (kN)
3/8	7/16	3 1/2	9,334	2,334	10,122	2,531	10,937	2,734	2,114	4,556	3,645
5/0		(89)	(41.5)	(10.4)	(45.0)	(11.3)	(48.7)	(12.2)	(9.4)	(20.3)	(16.2)
1/2	9/16	4 1/2	14,146	3,537	14,513	3,628	18,400	4,600	3,758	8,099	6,480
1/2		(114)	(62.9)	(15.7)	(64.6)	(16.1)	(81.8)	(20.5)	(16.7)	(36.0)	(28.8)
5/8	3/4	5 5/8	19,600	4,900	20,688	5,172	29,286	7,322	5,872	12,655	10,124
		(143)	(87.2)	(21.8)	(92.0)	(23.0)	(130.3)	(32.6)	(26.1)	(56.3)	(45.0)
2/4	7/8	6 3/4	25,053	6,263	26,864	6,716	34,762	8,691	8,456	18,224	12,392
3/4		(171)	(111.4)	(27.9)	(119.5)	(29.9)	(154.6)	(38.7)	(37.6)	(81.1)	(55.1)
7/8	1	7 7/8	33,374	8,344	34,328	8,582	39,524	9,881	11,509	24,804	16,867
		(200)	(148.5)	(37.1)	(152.7)	(38.2)	(175.8)	(44.0)	(51.2)	(110.3)	(75.0)
1	1 1/8	9	41,696	10,424	41,792	10,448	52,143	13,036	15,033	32,398	22,030
		(229)	(185.5)	(46.4)	(185.9)	(46.5)	(231.9)	(58.0)	(66.9)	(144.1)	(98.0)

Ultimate and allowable Tension loads for Threaded Rod in normal-weight concrete^{1, 2}

1. Allowable bond strength/concrete capacity was calculated using a safety factor of 4.0.

2. The lower value of either the allowable bond strength/concrete capacity or steel strength should be used as the allowable tension value for design.

3. Allowable steel strengths calculated in accordance with AISC Manual of Steel Construction: Tensile = 0.33*Fu*Anon.

4. Linear interpolation may be used for intermediate concrete compressive strengths.

Ultimate and allowable Shear loads for Threaded Rod in normal-weight concrete^{1, 2}

Threaded Rod Diameter in.	Nominal Drill Bit Diameter in.	Embedment Depth in. (mm)	Shear Load Based on Bond Strength/Concrete Capacity						Allowable Shear Load Based on		
			f'c ≥ 3,000 psi (20.7 MPa) ⁴		f'c ≥ 5,000 psi (34.5 MPa)⁴		f'c ≥ 7,000 psi (48.3 MPa)⁴				
			Ultimate Ibs. (kN)	Allowable Ibs. (kN)	Ultimate Ibs. (kN)	, Allowable Ibs. (kN)	Ultimate Ibs. (kN)	, Allowable Ibs. (kN)	Grade 36 Ibs. (kN)	Grade B7 Ibs. (kN)	ASTM F595 304/316 SS Ibs. (kN)
3/8	7/16	3 1/2 (89)	6,941 (30.9)	1,735 (7.7)	7,034 (31.3)	1,759 (7.8)	7,143 (31.8)	1,786 (7.9)	1,089 (4.8)	2,347 (10.4)	1,878 (8.4)
1/2	9/16	4 1/2 (114)	8,316 (37.0)	2,079 (9.2)	10,379 (46.2)	2,595 (11.5)	13,097 (58.3)	3,274 (14.6)	1,936 (8.6)	4,172 (18.6)	3,338 (14.8)
5/8	3/4	5 5/8 (143)	15,326 (68.2)	3,832 (17.0)	18,056 (80.3)	4,514 (20.1)	19,052 (84.7)	4,763 (21.2)	3,025 (13.5)	6,519 (29.0)	5,216 (23.2)
3/4	7/8	6 3/4 (171)	22,336 (99.4)	5,584 (24.8)	25,733 (114.5)	6,433 (28.6)	26,073 (116.0)	6,518 (29.0)	4,356 (19.4)	9,388 (41.8)	6,384 (28.4)
7/8	1	7 7/8 (200)	29,365 (130.6)	7,341 (32.7)	31,409 (139.7)	7,852 (34.9)	33,093 (147.2)	8,273 (36.8)	5,929 (26.4)	12,778 (56.8)	8,689 (38.7)
1	1 1/8	9 (229)	36,395 (161.9)	9,099 (40.5)	37,085 (165.0)	9,271 (41.2)	40,950 (182.2)	10,238 (45.5)	7,744 (34.4)	16,690 (74.2)	11,349 (50.5)

1. Allowable bond strength/concrete capacity was calculated using a safety factor of 4.0.

2. The lower value of either the allowable bond strength/concrete capacity or steel strength should be used as the allowable shear value for design.

3. Allowable steel strengths calculated in accordance with AISC Manual of Steel Construction: Shear = 0.17*Fu*Anom.

4. Linear interpolation may be used for intermediate concrete compressive strengths.

NON-SAG, HIGH-MODULUS, HIGH-STRENGTH DOWELING GEL

TECHNICAL LOAD VALUES

Rebar	Nominal Drill Bit Diameter in.	Embedment Depth in. (mm)	Tension Loa Bond Strength/C	ad Based on oncrete Capacity	Allowable Load Based on Steel Strength ³				
			f'₀ ≥ 3,000 ps	si (20.7 MPa)	Ten	sion	Shear		
Size			Ultimate Ibs. (kN)	Allowable Ibs. (kN)	ASTM A615 Grade 60 Ibs. (kN)	ASTM A615 Grade 75 Ibs. (kN)	ASTM A615 Grade 60 Ibs. (kN)	ASTM A615 Grade 75 Ibs. (kN)	
#3	1/2	3 3/8	10,025	2,506	2,640	3,300	1,683	1,870	
#3		(86)	(44.6)	(11.1)	(11.7)	(14.7)	(7.5)	(8.3)	
#4	5/8	4 1/2	15,236	3,809	4,800	6,000	3,060	3,400	
#4		(114)	(67.8)	(16.9)	(21.4)	(26.7)	(13.6)	(15.1)	
#5	3/4	5 5/8	22,285	5,571	7,440	9,300	4,743	5,270	
		(143)	(99.1)	(24.8)	(33.1)	(41.4)	(21.1)	(23.4)	
#6	7/8	6 3/4	32,993	8,248	10,560	13,200	6,732	7,480	
#0		(171)	<mark>(146.8</mark>)	(36.7)	(47.0)	(58.7)	(29.9)	(33.3)	

Ultimate and allowable Tension & Shear loads for Rebar in normal-weight concrete^{1, 2}

Allowable bond strength/concrete capacity was calculated using a safety factor of 4.0.
The lower value of either the allowable bond strength/concrete capacity or steel strength should be used as the allowable tension or shear value for design.
Allowable steel strengths calculated in accordance with AISC Manual of Steel Construction: Tensile = (Fy*Anom)/2.5, Shear = 0.17*Fu*Anom.